mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-12-22 14:24:22 +00:00
Compare commits
41 Commits
98ad4ac760
...
main
| Author | SHA1 | Date | |
|---|---|---|---|
| 6318d52f12 | |||
| 71dc5a924d | |||
| 7e27c87673 | |||
| e79667671a | |||
| c855ae89ec | |||
| 9ff214d759 | |||
| 13d3d38b68 | |||
| 84153ac49c | |||
| ad079560ff | |||
| 60964cf294 | |||
| a40ba96d4f | |||
| a97ff8e1f6 | |||
| 38cb0c9ac0 | |||
| 4161caf3e1 | |||
| 9f1a56c699 | |||
| 547cd0c224 | |||
| 1102aef293 | |||
| 82a0e7c19d | |||
| 51bcee01ab | |||
| ca44ea4436 | |||
| 104d6ea33d | |||
| 4c8b2ef537 | |||
| aeb1739c46 | |||
| fd4775faa4 | |||
| 5679dc0a50 | |||
| c83e1f0c45 | |||
| 6685aa6629 | |||
| e4d05931d4 | |||
| 7896ff0e24 | |||
| dfdfa19022 | |||
| 10c84d75fc | |||
| 4c26efe826 | |||
| 7f203b8947 | |||
| 64eac7050b | |||
| 24606491a3 | |||
| 6340b27055 | |||
| 25670f90c4 | |||
| d231e515b1 | |||
| 6744c8964f | |||
| 6133fb20af | |||
| 64bf9197ff |
@@ -23,8 +23,8 @@ endif()
|
||||
|
||||
|
||||
file(GLOB_RECURSE CPU_SOURCES
|
||||
src/*.cpp
|
||||
src/layers/*.cpp
|
||||
src/model/*.cpp
|
||||
)
|
||||
|
||||
set(LIBRARY_SOURCES ${CPU_SOURCES})
|
||||
@@ -32,10 +32,7 @@ set(LIBRARY_SOURCES ${CPU_SOURCES})
|
||||
if(USE_CUDA)
|
||||
file(GLOB_RECURSE CUDA_SOURCES
|
||||
src/backends/cuda/*.cu
|
||||
src/backends/cuda/utils/*.cu
|
||||
src/backends/cuda/kernels/*.cu
|
||||
src/backends/cuda/layers/*.cu
|
||||
src/layers/*.cu # To be removed
|
||||
)
|
||||
set(LIBRARY_SOURCES ${LIBRARY_SOURCES} ${CUDA_SOURCES})
|
||||
endif()
|
||||
@@ -46,17 +43,17 @@ set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
|
||||
add_library(${PROJECT_NAME} STATIC ${LIBRARY_SOURCES})
|
||||
|
||||
if(USE_CUDA)
|
||||
# Enable relocatable device code for proper template instantiation across translation units
|
||||
set_target_properties(${PROJECT_NAME} PROPERTIES
|
||||
CUDA_SEPARABLE_COMPILATION ON
|
||||
CUDA_RUNTIME_LIBRARY Shared
|
||||
)
|
||||
target_link_libraries(${PROJECT_NAME} CUDA::cudart)
|
||||
endif()
|
||||
|
||||
# Set include directories for the library
|
||||
target_include_directories(${PROJECT_NAME} PUBLIC
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/include
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/include/utils
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/include/kernels
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/include/layers
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/include/model
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src
|
||||
)
|
||||
|
||||
set_property(TARGET ${PROJECT_NAME} PROPERTY CXX_STANDARD 20)
|
||||
|
||||
@@ -213,7 +213,7 @@ InceptionB::InceptionB(
|
||||
branch3x3->getOutputSize(), branch3x3dbl_3->getOutputSize()
|
||||
);
|
||||
concat_2 = new CUDANet::Layers::Concat(
|
||||
concat_1->getOutputSize(), branchPool->getOutputSize()
|
||||
concat_1->getOutputSize(), branchPool->get_output_size()
|
||||
);
|
||||
|
||||
outputSize = concat_2->getOutputSize();
|
||||
@@ -441,7 +441,7 @@ InceptionD::InceptionD(
|
||||
branch3x3_2->getOutputSize(), branch7x7x3_4->getOutputSize()
|
||||
);
|
||||
concat_2 = new CUDANet::Layers::Concat(
|
||||
concat_1->getOutputSize(), branchPool->getOutputSize()
|
||||
concat_1->getOutputSize(), branchPool->get_output_size()
|
||||
);
|
||||
|
||||
outputSize = concat_2->getOutputSize();
|
||||
@@ -707,7 +707,7 @@ InceptionV3::InceptionV3(
|
||||
addLayer("AveragePool", avgpool);
|
||||
|
||||
fc = new CUDANet::Layers::Dense(
|
||||
avgpool->getOutputSize(), 1000, CUDANet::Layers::ActivationType::NONE
|
||||
avgpool->get_output_size(), 1000, CUDANet::Layers::ActivationType::NONE
|
||||
);
|
||||
addLayer("fc", fc);
|
||||
}
|
||||
|
||||
126
include/backend.hpp
Normal file
126
include/backend.hpp
Normal file
@@ -0,0 +1,126 @@
|
||||
#pragma once
|
||||
|
||||
#include <memory>
|
||||
#include <optional>
|
||||
|
||||
#include "shape.hpp"
|
||||
#include "tensor.hpp"
|
||||
|
||||
namespace CUDANet {
|
||||
|
||||
// Forward declarations
|
||||
class Backend;
|
||||
class Tensor;
|
||||
enum class DType;
|
||||
|
||||
enum BackendType { CUDA_BACKEND, CPU_BACKEND };
|
||||
|
||||
struct BackendConfig {
|
||||
int device_id = 0;
|
||||
};
|
||||
|
||||
class BackendFactory {
|
||||
public:
|
||||
static std::unique_ptr<Backend> create(BackendType backend_type, const BackendConfig& config);
|
||||
};
|
||||
|
||||
class Backend {
|
||||
protected:
|
||||
std::optional<DType> default_dtype;
|
||||
public:
|
||||
|
||||
// Dtypes
|
||||
virtual bool supports_dtype(DType dtype) const = 0;
|
||||
virtual void set_default_dtype(DType dtype) = 0;
|
||||
virtual DType get_default_dtype() const = 0;
|
||||
|
||||
// Memory management
|
||||
virtual void* allocate(size_t bytes) = 0;
|
||||
virtual void deallocate(void* ptr) = 0;
|
||||
|
||||
// Tensor ops
|
||||
virtual void print(const CUDANet::Tensor& input) = 0;
|
||||
virtual void zero(CUDANet::Tensor& input) = 0;
|
||||
virtual void fill(CUDANet::Tensor& input, int data) = 0;
|
||||
|
||||
virtual void
|
||||
copy_to_device(CUDANet::Tensor& tensor, void* data, size_t size) = 0;
|
||||
|
||||
virtual void sum(const CUDANet::Tensor& input, CUDANet::Tensor& sum) = 0;
|
||||
virtual void max(const CUDANet::Tensor& input, CUDANet::Tensor& max) = 0;
|
||||
|
||||
// Layer ops
|
||||
virtual void relu(CUDANet::Tensor& tensor) = 0;
|
||||
virtual void sigmoid(CUDANet::Tensor& tensor) = 0;
|
||||
virtual void softmax(
|
||||
CUDANet::Tensor& tensor,
|
||||
CUDANet::Tensor& temp_max,
|
||||
CUDANet::Tensor& temp_sum
|
||||
) = 0;
|
||||
|
||||
virtual CUDANet::Tensor& dense(
|
||||
const CUDANet::Tensor& weights,
|
||||
const CUDANet::Tensor& biases,
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
const size_t input_size,
|
||||
const size_t output_size
|
||||
) = 0;
|
||||
|
||||
virtual CUDANet::Tensor& conv2d(
|
||||
const CUDANet::Tensor& weights,
|
||||
const CUDANet::Tensor& biases,
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
const CUDANet::Shape in_shape,
|
||||
const CUDANet::Shape padding_shape,
|
||||
const CUDANet::Shape kernel_shape,
|
||||
const CUDANet::Shape stride_shape,
|
||||
const CUDANet::Shape out_shape
|
||||
) = 0;
|
||||
|
||||
virtual CUDANet::Tensor& max_pool2d(
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
CUDANet::Shape input_shape,
|
||||
CUDANet::Shape pool_shape,
|
||||
CUDANet::Shape stride_shape,
|
||||
CUDANet::Shape padding_shape,
|
||||
CUDANet::Shape output_shape
|
||||
) = 0;
|
||||
|
||||
virtual CUDANet::Tensor& avg_pool2d(
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
CUDANet::Shape input_shape,
|
||||
CUDANet::Shape pool_shape,
|
||||
CUDANet::Shape stride_shape,
|
||||
CUDANet::Shape padding_shape,
|
||||
CUDANet::Shape output_shape
|
||||
) = 0;
|
||||
|
||||
virtual CUDANet::Tensor& batch_norm(
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
CUDANet::Shape input_shape,
|
||||
CUDANet::Tensor& weights,
|
||||
CUDANet::Tensor& biases,
|
||||
CUDANet::Tensor& running_mean,
|
||||
CUDANet::Tensor& running_var,
|
||||
CUDANet::Tensor& epsilon
|
||||
) = 0;
|
||||
|
||||
virtual CUDANet::Tensor& concat(
|
||||
CUDANet::Tensor& input_a,
|
||||
CUDANet::Tensor& input_b,
|
||||
CUDANet::Tensor& output
|
||||
) = 0;
|
||||
|
||||
virtual CUDANet::Tensor& add(
|
||||
CUDANet::Tensor& input_a,
|
||||
CUDANet::Tensor& input_b,
|
||||
CUDANet::Tensor& output
|
||||
) = 0;
|
||||
};
|
||||
|
||||
} // namespace CUDANet
|
||||
26
include/backend/cpu/cpu.hpp
Normal file
26
include/backend/cpu/cpu.hpp
Normal file
@@ -0,0 +1,26 @@
|
||||
#pragma once
|
||||
|
||||
#include "backend.hpp"
|
||||
#include "tensor.hpp"
|
||||
|
||||
namespace CUDANet::Backends {
|
||||
|
||||
class CPU : public Backend {
|
||||
public:
|
||||
// Memory management
|
||||
void* allocate(size_t bytes) override;
|
||||
void deallocate(void* ptr) override;
|
||||
|
||||
// Tensor ops
|
||||
void print(const CUDANet::Tensor &input) override;
|
||||
void zero(CUDANet::Tensor &input) override;
|
||||
void sum(const CUDANet::Tensor &input, CUDANet::Tensor &sum) override;
|
||||
void max(const CUDANet::Tensor &input, CUDANet::Tensor &max) override;
|
||||
|
||||
// Layer ops
|
||||
void relu(CUDANet::Tensor &tensor) override;
|
||||
void sigmoid(CUDANet::Tensor &tensor) override;
|
||||
void softmax(CUDANet::Tensor &tensor, CUDANet::Tensor &temp_max, CUDANet::Tensor &temp_sum) override;
|
||||
};
|
||||
|
||||
}
|
||||
11
include/backend/cuda/all.cuh
Normal file
11
include/backend/cuda/all.cuh
Normal file
@@ -0,0 +1,11 @@
|
||||
#pragma once
|
||||
|
||||
// CUDA Backend Implementation
|
||||
#include "backend/cuda/cuda.cuh"
|
||||
|
||||
// CUDA Kernels
|
||||
#include "backend/cuda/kernels/activation_functions.cuh"
|
||||
#include "backend/cuda/kernels/convolution.cuh"
|
||||
#include "backend/cuda/kernels/matmul.cuh"
|
||||
#include "backend/cuda/kernels/pool.cuh"
|
||||
|
||||
243
include/backend/cuda/cuda.cuh
Normal file
243
include/backend/cuda/cuda.cuh
Normal file
@@ -0,0 +1,243 @@
|
||||
#pragma once
|
||||
|
||||
#include <cstdio>
|
||||
#include <set>
|
||||
|
||||
#include "backend.hpp"
|
||||
#include "tensor.hpp"
|
||||
|
||||
#ifndef BLOCK_SIZE
|
||||
#define BLOCK_SIZE 128
|
||||
#endif // BLOCK_SIZE
|
||||
|
||||
/**
|
||||
* @brief CUDA error checking macro
|
||||
*
|
||||
*/
|
||||
#define CUDA_CHECK(call) \
|
||||
do { \
|
||||
cudaError_t result = call; \
|
||||
if (result != cudaSuccess) { \
|
||||
fprintf( \
|
||||
stderr, "CUDA error at %s:%d code=%d(%s) \"%s\" \n", __FILE__, \
|
||||
__LINE__, static_cast<unsigned int>(result), \
|
||||
cudaGetErrorString(result), #call \
|
||||
); \
|
||||
exit(EXIT_FAILURE); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
namespace CUDANet::Backends {
|
||||
|
||||
template <DType dtype>
|
||||
struct cuda_dtype_map;
|
||||
|
||||
template <>
|
||||
struct cuda_dtype_map<DType::FLOAT32> {
|
||||
using type = float;
|
||||
};
|
||||
|
||||
class CUDA : public Backend {
|
||||
public:
|
||||
CUDA(const BackendConfig& config);
|
||||
|
||||
bool supports_dtype(DType dtype) const override;
|
||||
void set_default_dtype(DType dtype) override;
|
||||
DType get_default_dtype() const override;
|
||||
|
||||
static bool is_cuda_available();
|
||||
void initialize();
|
||||
|
||||
// Memory management
|
||||
void* allocate(size_t bytes) override;
|
||||
void deallocate(void* ptr) override;
|
||||
|
||||
// Tensor ops dispatchers
|
||||
void print(const CUDANet::Tensor& input) override;
|
||||
void zero(CUDANet::Tensor& input) override;
|
||||
void fill(CUDANet::Tensor& input, int value) override;
|
||||
void
|
||||
copy_to_device(CUDANet::Tensor& tensor, void* data, size_t size) override;
|
||||
void sum(const CUDANet::Tensor& input, CUDANet::Tensor& sum) override;
|
||||
void max(const CUDANet::Tensor& input, CUDANet::Tensor& max) override;
|
||||
|
||||
// Layer ops dispatchers
|
||||
void relu(CUDANet::Tensor& tensor) override;
|
||||
void sigmoid(CUDANet::Tensor& tensor) override;
|
||||
void softmax(
|
||||
CUDANet::Tensor& tensor,
|
||||
CUDANet::Tensor& temp_max,
|
||||
CUDANet::Tensor& temp_sum
|
||||
) override;
|
||||
|
||||
CUDANet::Tensor& dense(
|
||||
const CUDANet::Tensor& weights,
|
||||
const CUDANet::Tensor& biases,
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
const size_t input_size,
|
||||
const size_t output_size
|
||||
) override;
|
||||
|
||||
CUDANet::Tensor& conv2d(
|
||||
const CUDANet::Tensor& weights,
|
||||
const CUDANet::Tensor& biases,
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
const CUDANet::Shape in_shape,
|
||||
const CUDANet::Shape padding_shape,
|
||||
const CUDANet::Shape kernel_shape,
|
||||
const CUDANet::Shape stride_shape,
|
||||
const CUDANet::Shape out_shape
|
||||
) override;
|
||||
|
||||
CUDANet::Tensor& max_pool2d(
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
CUDANet::Shape input_shape,
|
||||
CUDANet::Shape pool_shape,
|
||||
CUDANet::Shape stride_shape,
|
||||
CUDANet::Shape padding_shape,
|
||||
CUDANet::Shape output_shape
|
||||
) override;
|
||||
|
||||
CUDANet::Tensor& avg_pool2d(
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
CUDANet::Shape input_shape,
|
||||
CUDANet::Shape pool_shape,
|
||||
CUDANet::Shape stride_shape,
|
||||
CUDANet::Shape padding_shape,
|
||||
CUDANet::Shape output_shape
|
||||
) override;
|
||||
|
||||
CUDANet::Tensor& batch_norm(
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
CUDANet::Shape input_shape,
|
||||
CUDANet::Tensor& weights,
|
||||
CUDANet::Tensor& biases,
|
||||
CUDANet::Tensor& running_mean,
|
||||
CUDANet::Tensor& running_var,
|
||||
CUDANet::Tensor& epsilon
|
||||
) override;
|
||||
|
||||
CUDANet::Tensor& concat(
|
||||
CUDANet::Tensor& input_a,
|
||||
CUDANet::Tensor& input_b,
|
||||
CUDANet::Tensor& output
|
||||
) override;
|
||||
|
||||
CUDANet::Tensor& add(
|
||||
CUDANet::Tensor& input_a,
|
||||
CUDANet::Tensor& input_b,
|
||||
CUDANet::Tensor& output
|
||||
) override;
|
||||
|
||||
private:
|
||||
int device_id;
|
||||
std::set<DType> supported_dtypes;
|
||||
|
||||
// Tensor ops template impls
|
||||
template <typename T>
|
||||
void print_impl(const CUDANet::Tensor& input);
|
||||
|
||||
template <typename T>
|
||||
void fill_impl(CUDANet::Tensor& input, int value);
|
||||
|
||||
template <typename T>
|
||||
void copy_to_device_impl(CUDANet::Tensor& tensor, void* data, size_t size);
|
||||
|
||||
template <typename T>
|
||||
void sum_impl(const CUDANet::Tensor& input, CUDANet::Tensor& sum);
|
||||
|
||||
template <typename T>
|
||||
void max_impl(const CUDANet::Tensor& input, CUDANet::Tensor& max);
|
||||
|
||||
// Layer ops template impls
|
||||
template <typename T>
|
||||
void relu_impl(CUDANet::Tensor& tensor);
|
||||
|
||||
template <typename T>
|
||||
void sigmoid_impl(CUDANet::Tensor& tensor);
|
||||
|
||||
template <typename T>
|
||||
void softmax_impl(
|
||||
CUDANet::Tensor& tensor,
|
||||
CUDANet::Tensor& temp_max,
|
||||
CUDANet::Tensor& temp_sum
|
||||
);
|
||||
|
||||
template <typename T>
|
||||
CUDANet::Tensor& dense_impl(
|
||||
const CUDANet::Tensor& weights,
|
||||
const CUDANet::Tensor& biases,
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
const size_t input_size,
|
||||
const size_t output_size
|
||||
);
|
||||
|
||||
template <typename T>
|
||||
CUDANet::Tensor& conv2d_impl(
|
||||
const CUDANet::Tensor& weights,
|
||||
const CUDANet::Tensor& biases,
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
const CUDANet::Shape in_shape,
|
||||
const CUDANet::Shape padding_shape,
|
||||
const CUDANet::Shape kernel_shape,
|
||||
const CUDANet::Shape stride_shape,
|
||||
const CUDANet::Shape out_shape
|
||||
);
|
||||
|
||||
template <typename T>
|
||||
CUDANet::Tensor& max_pool2d_impl(
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
CUDANet::Shape input_shape,
|
||||
CUDANet::Shape pool_shape,
|
||||
CUDANet::Shape stride_shape,
|
||||
CUDANet::Shape padding_shape,
|
||||
CUDANet::Shape output_shape
|
||||
);
|
||||
|
||||
template <typename T>
|
||||
CUDANet::Tensor& avg_pool2d_impl(
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
CUDANet::Shape input_shape,
|
||||
CUDANet::Shape pool_shape,
|
||||
CUDANet::Shape stride_shape,
|
||||
CUDANet::Shape padding_shape,
|
||||
CUDANet::Shape output_shape
|
||||
);
|
||||
|
||||
template <typename T>
|
||||
CUDANet::Tensor& batch_norm_impl(
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
CUDANet::Shape input_shape,
|
||||
CUDANet::Tensor& weights,
|
||||
CUDANet::Tensor& biases,
|
||||
CUDANet::Tensor& running_mean,
|
||||
CUDANet::Tensor& running_var,
|
||||
CUDANet::Tensor& epsilon
|
||||
);
|
||||
|
||||
template <typename T>
|
||||
CUDANet::Tensor& concat_impl(
|
||||
CUDANet::Tensor& input_a,
|
||||
CUDANet::Tensor& input_b,
|
||||
CUDANet::Tensor& output
|
||||
);
|
||||
|
||||
template <typename T>
|
||||
CUDANet::Tensor& add_impl(
|
||||
CUDANet::Tensor& input_a,
|
||||
CUDANet::Tensor& input_b,
|
||||
CUDANet::Tensor& output
|
||||
);
|
||||
};
|
||||
|
||||
} // namespace CUDANet::Backends
|
||||
22
include/backend/cuda/kernels/activation_functions.cuh
Normal file
22
include/backend/cuda/kernels/activation_functions.cuh
Normal file
@@ -0,0 +1,22 @@
|
||||
#pragma once
|
||||
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
namespace CUDANet::Kernels {
|
||||
|
||||
|
||||
template <typename T>
|
||||
__global__ void sigmoid(
|
||||
const T* __restrict__ src,
|
||||
T* __restrict__ dst,
|
||||
const unsigned int len
|
||||
);
|
||||
|
||||
template <typename T>
|
||||
__global__ void relu(
|
||||
const T* __restrict__ src,
|
||||
T* __restrict__ dst,
|
||||
const unsigned int len
|
||||
);
|
||||
|
||||
} // namespace CUDANet::Kernels
|
||||
21
include/backend/cuda/kernels/convolution.cuh
Normal file
21
include/backend/cuda/kernels/convolution.cuh
Normal file
@@ -0,0 +1,21 @@
|
||||
#pragma once
|
||||
|
||||
#include <cuda_runtime.h>
|
||||
#include "layer.hpp"
|
||||
|
||||
namespace CUDANet::Kernels {
|
||||
|
||||
template <typename T>
|
||||
__global__ void convolution(
|
||||
const T* __restrict__ d_input,
|
||||
const T* __restrict__ d_kernel,
|
||||
const T* __restrict__ d_bias,
|
||||
T* __restrict__ d_output,
|
||||
const Shape input_shape,
|
||||
const Shape padding_shape,
|
||||
const Shape kernel_shape,
|
||||
const Shape stride_shape,
|
||||
const Shape output_shape
|
||||
);
|
||||
|
||||
} // namespace CUDANet::Kernels
|
||||
109
include/backend/cuda/kernels/matmul.cuh
Normal file
109
include/backend/cuda/kernels/matmul.cuh
Normal file
@@ -0,0 +1,109 @@
|
||||
#pragma once
|
||||
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
namespace CUDANet::Kernels {
|
||||
|
||||
template <typename T>
|
||||
__global__ void mat_vec_mul(
|
||||
const T* __restrict__ d_matrix,
|
||||
const T* __restrict__ d_vector,
|
||||
T* __restrict__ d_output,
|
||||
const unsigned int w,
|
||||
const unsigned int h
|
||||
);
|
||||
|
||||
template <typename T>
|
||||
__global__ void vec_vec_add(
|
||||
const T* __restrict__ d_vector1,
|
||||
const T* __restrict__ d_vector2,
|
||||
T* __restrict__ d_output,
|
||||
const unsigned int w
|
||||
);
|
||||
|
||||
template <typename T>
|
||||
__global__ void vec_vec_sub(
|
||||
const T* __restrict__ d_vector1,
|
||||
const T* __restrict__ d_vector2,
|
||||
T* __restrict__ d_output,
|
||||
const unsigned int w
|
||||
);
|
||||
|
||||
template <typename T>
|
||||
__global__ void vec_vec_mul(
|
||||
const T* __restrict__ d_vector1,
|
||||
const T* __restrict__ d_vector2,
|
||||
T* __restrict__ d_output,
|
||||
const unsigned int w
|
||||
);
|
||||
|
||||
template <typename T>
|
||||
__global__ void vec_scalar_sub(
|
||||
const T* __restrict__ d_src,
|
||||
T* __restrict__ d_out,
|
||||
const T* __restrict__ d_scalar,
|
||||
const unsigned int len
|
||||
);
|
||||
|
||||
template <typename T>
|
||||
__global__ void vec_scalar_add(
|
||||
const T* __restrict__ d_src,
|
||||
T* __restrict__ d_out,
|
||||
const T* __restrict__ d_scalar,
|
||||
const unsigned int len
|
||||
);
|
||||
|
||||
template <typename T>
|
||||
__global__ void vec_scalar_div(
|
||||
const T* __restrict__ d_src,
|
||||
T* __restrict__ d_out,
|
||||
const T* __restrict__ d_scalar,
|
||||
const unsigned int len
|
||||
);
|
||||
|
||||
template <typename T>
|
||||
__global__ void vec_scalar_mul(
|
||||
const T* __restrict__ d_src,
|
||||
T* __restrict__ d_out,
|
||||
const T* __restrict__ d_scalar,
|
||||
const unsigned int len
|
||||
);
|
||||
|
||||
template <typename T>
|
||||
__global__ void vec_exp(
|
||||
const T* __restrict__ src,
|
||||
T* __restrict__ dst,
|
||||
const unsigned int len
|
||||
);
|
||||
|
||||
template <typename T>
|
||||
__global__ void vec_sqrt(
|
||||
const T* __restrict__ src,
|
||||
T* __restrict__ dst,
|
||||
const unsigned int len
|
||||
);
|
||||
|
||||
template <typename T>
|
||||
__global__ void vec_scale(
|
||||
const T* __restrict__ src,
|
||||
T* __restrict__ dst,
|
||||
const T* __restrict__ scale,
|
||||
const T* epsilon,
|
||||
const unsigned int len
|
||||
);
|
||||
|
||||
template <typename T>
|
||||
__global__ void max_reduce(
|
||||
const T* __restrict__ d_vector,
|
||||
T* __restrict__ d_output,
|
||||
const unsigned int len
|
||||
);
|
||||
|
||||
template <typename T>
|
||||
__global__ void sum_reduce(
|
||||
const T* __restrict__ d_vector,
|
||||
T* __restrict__ d_output,
|
||||
const unsigned int len
|
||||
);
|
||||
|
||||
} // namespace CUDANet::Kernels
|
||||
30
include/backend/cuda/kernels/pool.cuh
Normal file
30
include/backend/cuda/kernels/pool.cuh
Normal file
@@ -0,0 +1,30 @@
|
||||
#pragma once
|
||||
|
||||
#include <cuda_runtime.h>
|
||||
#include "layer.hpp"
|
||||
|
||||
namespace CUDANet::Kernels {
|
||||
|
||||
template <typename T>
|
||||
__global__ void max_pool(
|
||||
const T* __restrict__ d_input,
|
||||
T* __restrict__ d_output,
|
||||
const Shape input_shape,
|
||||
const Shape output_shape,
|
||||
const Shape pool_shape,
|
||||
const Shape stride_shape,
|
||||
const Shape padding_shape
|
||||
);
|
||||
|
||||
template <typename T>
|
||||
__global__ void avg_pool(
|
||||
const T* __restrict__ d_input,
|
||||
T* __restrict__ d_output,
|
||||
const Shape input_shape,
|
||||
const Shape output_shape,
|
||||
const Shape pool_shape,
|
||||
const Shape stride_shape,
|
||||
const Shape padding_shape
|
||||
);
|
||||
|
||||
} // namespace CUDANet::Kernels
|
||||
@@ -1,35 +0,0 @@
|
||||
#ifndef CUDANET_H
|
||||
#define CUDANET_H
|
||||
|
||||
#ifdef USE_CUDA
|
||||
#include "activation_functions.cuh"
|
||||
#include "convolution.cuh"
|
||||
#include "matmul.cuh"
|
||||
#include "pooling.cuh"
|
||||
#endif
|
||||
|
||||
// Layers
|
||||
#include "activation.hpp"
|
||||
#include "add.hpp"
|
||||
#include "avg_pooling.hpp"
|
||||
#include "batch_norm.hpp"
|
||||
#include "concat.hpp"
|
||||
#include "conv2d.hpp"
|
||||
#include "dense.hpp"
|
||||
#include "input.hpp"
|
||||
#include "layer.hpp"
|
||||
#include "max_pooling.hpp"
|
||||
#include "output.hpp"
|
||||
|
||||
// Models
|
||||
#include "model.hpp"
|
||||
#include "module.hpp"
|
||||
|
||||
// Utils
|
||||
#include "imagenet.hpp"
|
||||
#ifdef USE_CUDA
|
||||
#include "cuda_helper.cuh"
|
||||
#include "vector.cuh"
|
||||
#endif
|
||||
|
||||
#endif // CUDANET_H
|
||||
55
include/cudanet.hpp
Normal file
55
include/cudanet.hpp
Normal file
@@ -0,0 +1,55 @@
|
||||
#pragma once
|
||||
|
||||
// ============================================================================
|
||||
// Core Data Structures & Abstractions (BACKEND-INDEPENDENT)
|
||||
// ============================================================================
|
||||
|
||||
#include "shape.hpp"
|
||||
#include "backend.hpp"
|
||||
#include "tensor.hpp"
|
||||
#include "layer.hpp"
|
||||
|
||||
// ============================================================================
|
||||
// Container Classes
|
||||
// ============================================================================
|
||||
|
||||
#include "module.hpp"
|
||||
#include "model.hpp"
|
||||
|
||||
// ============================================================================
|
||||
// Layer Implementations
|
||||
// ============================================================================
|
||||
|
||||
// Activation
|
||||
#include "layers/activation.hpp"
|
||||
|
||||
// Normalization
|
||||
#include "layers/batch_norm.hpp"
|
||||
|
||||
// Linear
|
||||
#include "layers/dense.hpp"
|
||||
|
||||
// Convolutional
|
||||
#include "layers/conv2d.hpp"
|
||||
|
||||
// Pooling
|
||||
#include "layers/max_pool.hpp"
|
||||
#include "layers/avg_pool.hpp"
|
||||
|
||||
// Composition (element-wise operations)
|
||||
#include "layers/add.hpp"
|
||||
#include "layers/concat.hpp"
|
||||
|
||||
// ============================================================================
|
||||
// Dataset Labels
|
||||
// ============================================================================
|
||||
|
||||
#include "datasets/imagenet.hpp"
|
||||
|
||||
// ============================================================================
|
||||
// Backend-Specific Includes (conditionally compiled)
|
||||
// ============================================================================
|
||||
|
||||
#ifdef USE_CUDA
|
||||
#include "backend/cuda/all.cuh"
|
||||
#endif
|
||||
@@ -1,5 +1,4 @@
|
||||
#ifndef CUDANET_IMAGENET_H
|
||||
#define CUDANET_IMAGENET_H
|
||||
#pragma once
|
||||
|
||||
#include <map>
|
||||
#include <string>
|
||||
@@ -1012,5 +1011,3 @@ const std::map <int, std::string> IMAGENET_CLASS_MAP = {
|
||||
// clang-format on
|
||||
|
||||
}
|
||||
|
||||
#endif // CUDANET_IMAGENET_H
|
||||
@@ -1,36 +0,0 @@
|
||||
#ifndef CUDANET_ACTIVATION_FUNCTIONS_H
|
||||
#define CUDANET_ACTIVATION_FUNCTIONS_H
|
||||
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
namespace CUDANet::Kernels {
|
||||
|
||||
/**
|
||||
* @brief Sigmoid activation function kernel
|
||||
*
|
||||
* @param src Pointer to the source array
|
||||
* @param dst Pointer to the destination array
|
||||
* @param len Length of the arrays
|
||||
*/
|
||||
__global__ void sigmoid(
|
||||
const float* __restrict__ src,
|
||||
float* __restrict__ dst,
|
||||
const unsigned int len
|
||||
);
|
||||
|
||||
/**
|
||||
* @brief Relu activation function kernel
|
||||
*
|
||||
* @param src Pointer to the source array
|
||||
* @param dst Pointer to the destination array
|
||||
* @param len Length of the arrays
|
||||
*/
|
||||
__global__ void relu(
|
||||
const float* __restrict__ src,
|
||||
float* __restrict__ dst,
|
||||
const unsigned int len
|
||||
);
|
||||
|
||||
} // namespace CUDANet::Kernels
|
||||
|
||||
#endif // CUDANET_ACTIVATION_FUNCTIONS_H
|
||||
@@ -1,39 +0,0 @@
|
||||
#ifndef CUDANET_CONVOLUTION_H
|
||||
#define CUDANET_CONVOLUTION_H
|
||||
|
||||
#include <cuda_runtime.h>
|
||||
#include "layer.hpp"
|
||||
|
||||
namespace CUDANet::Kernels {
|
||||
|
||||
/**
|
||||
* @brief Convolution kernel
|
||||
*
|
||||
* @param d_input Device pointer to the input matrix
|
||||
* @param d_kernel Device pointer to the convolution kernel
|
||||
* @param d_bias Device pointer to the bias
|
||||
* @param d_output Device pointer to the output matrix
|
||||
* @param inputSize Width and height of the input matrix
|
||||
* @param nChannels Number of channels in the input matrix
|
||||
* @param kernelSize Width and height of the convolution kernel
|
||||
* @param stride Convolution stride
|
||||
* @param nFilters Number of output filters
|
||||
* @param outputSize Width and height of the output matrix
|
||||
*/
|
||||
__global__ void convolution(
|
||||
const float* __restrict__ d_input,
|
||||
const float* __restrict__ d_kernel,
|
||||
const float* __restrict__ d_bias,
|
||||
float* __restrict__ d_output,
|
||||
const shape2d inputSize,
|
||||
const int nChannels,
|
||||
const shape2d paddingSize,
|
||||
const shape2d kernelSize,
|
||||
const shape2d stride,
|
||||
const int nFilters,
|
||||
const shape2d outputSize
|
||||
);
|
||||
|
||||
} // namespace CUDANet::Kernels
|
||||
|
||||
#endif // CUDANET_CONVOLUTION_H
|
||||
@@ -1,195 +0,0 @@
|
||||
#ifndef CUDANET_MATMUL_H
|
||||
#define CUDANET_MATMUL_H
|
||||
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
namespace CUDANet::Kernels {
|
||||
|
||||
/**
|
||||
* @brief Matrix vector multiplication kernel
|
||||
*
|
||||
* @param d_matrix Device pointer to matrix
|
||||
* @param d_vector Device pointer to vector
|
||||
* @param d_output Device pointer to output vector
|
||||
* @param w Width of the matrix
|
||||
* @param h Height of the matrix
|
||||
*/
|
||||
__global__ void mat_vec_mul(
|
||||
const float* __restrict__ d_matrix,
|
||||
const float* __restrict__ d_vector,
|
||||
float* __restrict__ d_output,
|
||||
const unsigned int w,
|
||||
const unsigned int h
|
||||
);
|
||||
|
||||
/**
|
||||
* @brief Vector vector addition kernel
|
||||
*
|
||||
* @param d_vector1 Device pointer to first vector
|
||||
* @param d_vector2 Device pointer to second vector
|
||||
* @param d_output Device pointer to output vector
|
||||
* @param w Length of the vectors
|
||||
*/
|
||||
__global__ void vec_vec_add(
|
||||
const float* __restrict__ d_vector1,
|
||||
const float* __restrict__ d_vector2,
|
||||
float* __restrict__ d_output,
|
||||
const unsigned int w
|
||||
);
|
||||
|
||||
/**
|
||||
* @brief Vector vector subtraction kernel
|
||||
*
|
||||
* @param d_vector1
|
||||
* @param d_vector2
|
||||
* @param d_output
|
||||
* @param w
|
||||
* @return __global__
|
||||
*/
|
||||
__global__ void vec_vec_sub(
|
||||
const float* __restrict__ d_vector1,
|
||||
const float* __restrict__ d_vector2,
|
||||
float* __restrict__ d_output,
|
||||
const unsigned int w
|
||||
);
|
||||
|
||||
__global__ void vec_vec_mul(
|
||||
const float* __restrict__ d_vector1,
|
||||
const float* __restrict__ d_vector2,
|
||||
float* __restrict__ d_output,
|
||||
const unsigned int w
|
||||
);
|
||||
|
||||
/**
|
||||
* @brief Sub scalar from each element of the vector
|
||||
*
|
||||
* @param d_vector
|
||||
* @param d_scalar
|
||||
* @param d_output
|
||||
* @param w
|
||||
* @return __global__
|
||||
*/
|
||||
__global__ void vec_scalar_sub(
|
||||
const float* __restrict__ d_src,
|
||||
float* __restrict__ d_out,
|
||||
const float* __restrict__ d_scalar,
|
||||
const unsigned int len
|
||||
);
|
||||
|
||||
/**
|
||||
* @brief Add scalar to each element of the vector
|
||||
*
|
||||
* @param d_src
|
||||
* @param d_out
|
||||
* @param d_scalar
|
||||
* @param len
|
||||
* @return __global__
|
||||
*/
|
||||
__global__ void vec_scalar_add(
|
||||
const float* __restrict__ d_src,
|
||||
float* __restrict__ d_out,
|
||||
const float* __restrict__ d_scalar,
|
||||
const unsigned int len
|
||||
);
|
||||
|
||||
/**
|
||||
* @brief Divide each element of the vector by a scalar
|
||||
*
|
||||
* @param src Pointer to the source array
|
||||
* @param dst Pointer to the destination array
|
||||
* @param len Length of the arrays
|
||||
*/
|
||||
__global__ void vec_scalar_div(
|
||||
const float* __restrict__ d_src,
|
||||
float* __restrict__ d_out,
|
||||
const float* __restrict__ d_scalar,
|
||||
const unsigned int len
|
||||
);
|
||||
|
||||
/**
|
||||
* @brief Multiply each element of the vector by a scalar
|
||||
*
|
||||
* @param d_src
|
||||
* @param d_out
|
||||
* @param d_scalar
|
||||
* @param len
|
||||
* @return __global__
|
||||
*/
|
||||
__global__ void vec_scalar_mul(
|
||||
const float* __restrict__ d_src,
|
||||
float* __restrict__ d_out,
|
||||
const float* __restrict__ d_scalar,
|
||||
const unsigned int len
|
||||
);
|
||||
|
||||
/**
|
||||
* @brief Exponentiate each element of the vector
|
||||
*
|
||||
* @param src Pointer to the source array
|
||||
* @param dst Pointer to the destination array
|
||||
* @param len Length of the arrays
|
||||
*/
|
||||
__global__ void vec_exp(
|
||||
const float* __restrict__ src,
|
||||
float* __restrict__ dst,
|
||||
const unsigned int len
|
||||
);
|
||||
|
||||
/**
|
||||
* @brief Compute the square root of each element of the vector
|
||||
*
|
||||
* @param src Device pointer to source vector
|
||||
* @param dst Device pointer to destination vector
|
||||
* @param len Length of the vector
|
||||
*/
|
||||
__global__ void vec_sqrt(
|
||||
const float* __restrict__ src,
|
||||
float* __restrict__ dst,
|
||||
const unsigned int len
|
||||
);
|
||||
|
||||
/**
|
||||
* @brief Scales the vector by 1/sqrt(scale + epsilon)
|
||||
*
|
||||
* @param src Device pointer to source vector
|
||||
* @param dst Device pointer to destination vector
|
||||
* @param scale Scale
|
||||
* @param epsilon Epsilon
|
||||
* @param len Length of the vector
|
||||
*/
|
||||
__global__ void vec_scale(
|
||||
const float* __restrict__ src,
|
||||
float* __restrict__ dst,
|
||||
const float* __restrict__ scale,
|
||||
const float* epsilon,
|
||||
const unsigned int len
|
||||
);
|
||||
|
||||
/**
|
||||
* @brief Max reduction kernel
|
||||
*
|
||||
* @param d_vector Device pointer to vector
|
||||
* @param d_output Device pointer to output vector
|
||||
*/
|
||||
__global__ void max_reduce(
|
||||
const float* __restrict__ d_vector,
|
||||
float* __restrict__ d_output,
|
||||
const unsigned int len
|
||||
);
|
||||
|
||||
/**
|
||||
* @brief
|
||||
*
|
||||
* @param d_vector Device pointer to vector
|
||||
* @param d_output Device pointer to output vector
|
||||
* @param len Length of the vector
|
||||
*/
|
||||
__global__ void sum_reduce(
|
||||
const float* __restrict__ d_vector,
|
||||
float* __restrict__ d_output,
|
||||
const unsigned int len
|
||||
);
|
||||
|
||||
} // namespace CUDANet::Kernels
|
||||
|
||||
#endif // CUDANET_MATMUL_H
|
||||
@@ -1,33 +0,0 @@
|
||||
#ifndef CUDANET_POOLING_H
|
||||
#define CUDANET_POOLING_H
|
||||
|
||||
#include <cuda_runtime.h>
|
||||
#include "layer.hpp"
|
||||
|
||||
namespace CUDANet::Kernels {
|
||||
|
||||
__global__ void max_pooling(
|
||||
const float* __restrict__ d_input,
|
||||
float* __restrict__ d_output,
|
||||
const shape2d inputSize,
|
||||
const shape2d outputSize,
|
||||
const int nChannels,
|
||||
const shape2d poolingSize,
|
||||
const shape2d stride,
|
||||
const shape2d padding
|
||||
);
|
||||
|
||||
__global__ void avg_pooling(
|
||||
const float* __restrict__ d_input,
|
||||
float* __restrict__ d_output,
|
||||
const shape2d inputSize,
|
||||
const shape2d outputSize,
|
||||
const int nChannels,
|
||||
const shape2d poolingSize,
|
||||
const shape2d stride,
|
||||
const shape2d padding
|
||||
);
|
||||
|
||||
} // namespace CUDANet::Kernels
|
||||
|
||||
#endif // CUDANET_POOLING_H
|
||||
44
include/layer.hpp
Normal file
44
include/layer.hpp
Normal file
@@ -0,0 +1,44 @@
|
||||
#pragma once
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "shape.hpp"
|
||||
#include "tensor.hpp"
|
||||
|
||||
#define CUDANET_SAME_PADDING(inputSize, kernelSize, stride) \
|
||||
((stride - 1) * inputSize - stride + kernelSize) / 2;
|
||||
|
||||
|
||||
namespace CUDANet {
|
||||
|
||||
/**
|
||||
* @brief Basic Layer
|
||||
*
|
||||
*/
|
||||
class Layer {
|
||||
protected:
|
||||
CUDANet::DType dtype;
|
||||
public:
|
||||
|
||||
virtual ~Layer(){};
|
||||
|
||||
virtual CUDANet::Tensor& forward(CUDANet::Tensor &input) = 0;
|
||||
|
||||
virtual CUDANet::Shape input_shape() = 0;
|
||||
|
||||
virtual CUDANet::Shape output_shape() = 0;
|
||||
|
||||
virtual size_t input_size() = 0;
|
||||
|
||||
virtual size_t output_size() = 0;
|
||||
|
||||
virtual void set_weights(void *input) = 0;
|
||||
|
||||
virtual size_t get_weights_size() = 0;
|
||||
|
||||
virtual void set_biases(void *input) = 0;
|
||||
|
||||
virtual size_t get_biases_size() = 0;
|
||||
};
|
||||
|
||||
} // namespace CUDANet
|
||||
@@ -1,5 +1,8 @@
|
||||
#ifndef CUDANET_ACTIVATION_H
|
||||
#define CUDANET_ACTIVATION_H
|
||||
#pragma once
|
||||
|
||||
#include "tensor.hpp"
|
||||
#include "backend.hpp"
|
||||
#include "layer.hpp"
|
||||
|
||||
namespace CUDANet::Layers {
|
||||
|
||||
@@ -17,53 +20,42 @@ enum ActivationType { SIGMOID, RELU, SOFTMAX, NONE };
|
||||
* @brief Utility class that performs activation
|
||||
*
|
||||
*/
|
||||
class Activation {
|
||||
class Activation : public CUDANet::Layer {
|
||||
public:
|
||||
|
||||
Activation() = default;
|
||||
|
||||
/**
|
||||
* @brief Construct a new Activation object
|
||||
*
|
||||
* @param activation Type of activation
|
||||
* @param length Length of the input
|
||||
*/
|
||||
Activation(ActivationType activation, const int length);
|
||||
Activation(ActivationType activation, const CUDANet::Shape &shape, CUDANet::Backend* backend);
|
||||
Activation(ActivationType activation, const CUDANet::Shape &shape, CUDANet::DType dtype, CUDANet::Backend* backend);
|
||||
|
||||
/**
|
||||
* @brief Destroy the Activation object
|
||||
*
|
||||
*/
|
||||
~Activation();
|
||||
~Activation() = default;
|
||||
|
||||
/**
|
||||
* @brief Run the activation function on the input
|
||||
*
|
||||
* @param d_input Pointer to the input vector on the device
|
||||
*/
|
||||
void activate(float* d_input);
|
||||
CUDANet::Tensor& forward(CUDANet::Tensor &input) override;
|
||||
|
||||
CUDANet::Shape input_shape() override;
|
||||
|
||||
CUDANet::Shape output_shape() override;
|
||||
|
||||
size_t input_size() override;
|
||||
|
||||
size_t output_size() override;
|
||||
|
||||
void set_weights(void *input) override;
|
||||
|
||||
size_t get_weights_size() override;
|
||||
|
||||
void set_biases(void *input) override;
|
||||
|
||||
size_t get_biases_size() override;
|
||||
|
||||
|
||||
private:
|
||||
ActivationType activationType;
|
||||
int length;
|
||||
CUDANet::Backend* backend;
|
||||
ActivationType activation_type;
|
||||
CUDANet::Shape shape;
|
||||
|
||||
void activateCPU(float* input);
|
||||
|
||||
#ifdef USE_CUDA
|
||||
int gridSize;
|
||||
|
||||
float* d_softmax_sum;
|
||||
float* d_max;
|
||||
|
||||
void activateCUDA(float* d_input);
|
||||
|
||||
void initCUDA();
|
||||
void delCUDA();
|
||||
#endif
|
||||
CUDANet::Tensor softmax_sum;
|
||||
CUDANet::Tensor tensor_max;
|
||||
};
|
||||
|
||||
|
||||
} // namespace CUDANet::Layers
|
||||
|
||||
#endif // CUDANET_ACTIVATION_H
|
||||
@@ -1,49 +1,27 @@
|
||||
#ifndef CUDANET_ADD_LAYER_H
|
||||
#define CUDANET_ADD_LAYER_H
|
||||
#pragma once
|
||||
|
||||
#include "shape.hpp"
|
||||
#include "tensor.hpp"
|
||||
|
||||
namespace CUDANet::Layers {
|
||||
|
||||
class Add {
|
||||
public:
|
||||
/**
|
||||
* @brief Create a new Add layer
|
||||
*
|
||||
* @param inputSize Size of the input arrays
|
||||
*/
|
||||
Add(int inputSize);
|
||||
Add(CUDANet::Shape a_shape, CUDANet::Shape b_shape, CUDANet::Backend* backend);
|
||||
Add(CUDANet::Shape a_shape, CUDANet::Shape b_shape, CUDANet::DType dtype, CUDANet::Backend* backend);
|
||||
|
||||
/**
|
||||
* @brief Destroy the Add layer
|
||||
*
|
||||
*/
|
||||
~Add();
|
||||
|
||||
/**
|
||||
* @brief Adds first input to second input
|
||||
*
|
||||
* @param d_inputA Device pointer to the first input
|
||||
* @param d_inputB Device pointer to the second input
|
||||
*
|
||||
*/
|
||||
float* forward(const float* inputA, const float* inputB);
|
||||
CUDANet::Tensor&
|
||||
forward(CUDANet::Tensor& input_a, CUDANet::Tensor& input_b);
|
||||
|
||||
private:
|
||||
int inputSize;
|
||||
CUDANet::Shape out_shape;
|
||||
CUDANet::Tensor output;
|
||||
|
||||
float* output;
|
||||
CUDANet::Backend *backend;
|
||||
|
||||
float* forwardCPU(const float* inputA, const float* inputB);
|
||||
|
||||
#ifdef USE_CUDA
|
||||
float* d_output;
|
||||
int gridSize;
|
||||
|
||||
float* forwardCUDA(const float* d_inputA, const float* d_inputB);
|
||||
void initCUDA();
|
||||
void delCUDA();
|
||||
#endif
|
||||
CUDANet::DType dtype;
|
||||
};
|
||||
|
||||
} // namespace CUDANet::Layers
|
||||
|
||||
#endif // CUDANET_ADD_LAYER_H
|
||||
64
include/layers/avg_pool.hpp
Normal file
64
include/layers/avg_pool.hpp
Normal file
@@ -0,0 +1,64 @@
|
||||
#pragma once
|
||||
|
||||
#include "layer.hpp"
|
||||
|
||||
namespace CUDANet::Layers {
|
||||
|
||||
class AvgPool2d : public CUDANet::Layer {
|
||||
public:
|
||||
AvgPool2d(
|
||||
CUDANet::Shape input_shape,
|
||||
CUDANet::Shape pool_shape,
|
||||
CUDANet::Shape stride_shape,
|
||||
CUDANet::Shape padding_shape,
|
||||
CUDANet::Backend *backend
|
||||
);
|
||||
AvgPool2d(
|
||||
CUDANet::Shape input_shape,
|
||||
CUDANet::Shape pool_shape,
|
||||
CUDANet::Shape stride_shape,
|
||||
CUDANet::Shape padding_shape,
|
||||
CUDANet::DType dtype,
|
||||
CUDANet::Backend *backend
|
||||
);
|
||||
|
||||
~AvgPool2d();
|
||||
|
||||
CUDANet::Tensor& forward(CUDANet::Tensor& input) override;
|
||||
|
||||
CUDANet::Shape input_shape() override;
|
||||
|
||||
CUDANet::Shape output_shape() override;
|
||||
|
||||
size_t input_size() override;
|
||||
|
||||
size_t output_size() override;
|
||||
|
||||
void set_weights(void* input) override;
|
||||
|
||||
size_t get_weights_size() override;
|
||||
|
||||
void set_biases(void* input) override;
|
||||
|
||||
size_t get_biases_size() override;
|
||||
|
||||
protected:
|
||||
CUDANet::Shape in_shape;
|
||||
|
||||
CUDANet::Shape pool_shape;
|
||||
CUDANet::Shape stride_shape;
|
||||
CUDANet::Shape padding_shape;
|
||||
|
||||
CUDANet::Shape out_shape;
|
||||
CUDANet::Tensor output;
|
||||
|
||||
CUDANet::Backend *backend;
|
||||
};
|
||||
|
||||
class AdaptiveAvgPool2d : public AvgPool2d {
|
||||
public:
|
||||
AdaptiveAvgPool2d(CUDANet::Shape input_shape, CUDANet::Shape output_shape, CUDANet::Backend *backend);
|
||||
AdaptiveAvgPool2d(CUDANet::Shape input_shape, CUDANet::Shape output_shape, CUDANet::DType dtype, CUDANet::Backend *backend);
|
||||
};
|
||||
|
||||
} // namespace CUDANet::Layers
|
||||
@@ -1,78 +0,0 @@
|
||||
#ifndef CUDANET_AVG_POOLING_H
|
||||
#define CUDANET_AVG_POOLING_H
|
||||
|
||||
#include "activation.hpp"
|
||||
#include "layer.hpp"
|
||||
|
||||
namespace CUDANet::Layers {
|
||||
|
||||
class AvgPooling2d : public SequentialLayer, public TwoDLayer {
|
||||
public:
|
||||
AvgPooling2d(
|
||||
shape2d inputSize,
|
||||
int nChannels,
|
||||
shape2d poolingSize,
|
||||
shape2d stride,
|
||||
shape2d padding,
|
||||
ActivationType activationType
|
||||
);
|
||||
~AvgPooling2d();
|
||||
|
||||
float* forward(const float* input);
|
||||
|
||||
/**
|
||||
* @brief Get output size
|
||||
*
|
||||
* @return int output size
|
||||
*/
|
||||
int getOutputSize();
|
||||
|
||||
/**
|
||||
* @brief Get input size
|
||||
*
|
||||
* @return int input size
|
||||
*/
|
||||
int getInputSize();
|
||||
|
||||
shape2d getOutputDims();
|
||||
|
||||
protected:
|
||||
shape2d inputSize;
|
||||
int nChannels;
|
||||
shape2d poolingSize;
|
||||
shape2d stride;
|
||||
shape2d padding;
|
||||
|
||||
shape2d outputSize;
|
||||
|
||||
Activation* activation;
|
||||
|
||||
float* forwardCPU(const float* input);
|
||||
|
||||
#ifdef USE_CUDA
|
||||
float* d_output;
|
||||
float* forwardCUDA(const float* d_input);
|
||||
|
||||
void initCUDA();
|
||||
void delCUDA();
|
||||
#endif
|
||||
};
|
||||
|
||||
class AdaptiveAvgPooling2d : public AvgPooling2d {
|
||||
public:
|
||||
AdaptiveAvgPooling2d(
|
||||
shape2d inputShape,
|
||||
int nChannels,
|
||||
shape2d outputShape,
|
||||
ActivationType activationType
|
||||
);
|
||||
|
||||
private:
|
||||
#ifdef USE_CUDA
|
||||
void initCUDA();
|
||||
#endif
|
||||
};
|
||||
|
||||
} // namespace CUDANet::Layers
|
||||
|
||||
#endif // CUDANET_AVG_POOLING_H
|
||||
@@ -1,170 +1,55 @@
|
||||
#ifndef CUDANET_BATCH_NORM_H
|
||||
#define CUDANET_BATCH_NORM_H
|
||||
#pragma once
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "activation.hpp"
|
||||
#include "layer.hpp"
|
||||
|
||||
namespace CUDANet::Layers {
|
||||
|
||||
class BatchNorm2d : public WeightedLayer, public TwoDLayer {
|
||||
class BatchNorm2d : public CUDANet::Layer {
|
||||
public:
|
||||
BatchNorm2d(
|
||||
shape2d inputSize,
|
||||
int inputChannels,
|
||||
float epsilon,
|
||||
ActivationType activationType
|
||||
);
|
||||
BatchNorm2d(CUDANet::Shape input_shape, float epsilon, CUDANet::Backend *backend);
|
||||
BatchNorm2d(CUDANet::Shape input_shape, float epsilon, CUDANet::DType dtype, CUDANet::Backend *backend);
|
||||
|
||||
~BatchNorm2d();
|
||||
|
||||
/**
|
||||
* @brief Compute the forward pass of the batchnorm layer
|
||||
*
|
||||
* @param d_input Device pointer to the input
|
||||
* @return float* Device pointer to the output
|
||||
*/
|
||||
float* forward(const float* d_input);
|
||||
CUDANet::Tensor& forward(CUDANet::Tensor& input) override;
|
||||
|
||||
/**
|
||||
* @brief Set the weights of the batchnorm layer
|
||||
*
|
||||
* @param weights_input Pointer to the weights
|
||||
*/
|
||||
void setWeights(const float* weights_input);
|
||||
CUDANet::Shape input_shape() override;
|
||||
|
||||
/**
|
||||
* @brief Get the weights of the batchnorm layer
|
||||
*
|
||||
* @return std::vector<float>
|
||||
*/
|
||||
std::vector<float> getWeights();
|
||||
CUDANet::Shape output_shape() override;
|
||||
|
||||
/**
|
||||
* @brief Set the biases of the batchnorm layer
|
||||
*
|
||||
* @param biases_input Pointer to the biases
|
||||
*/
|
||||
void setBiases(const float* biases_input);
|
||||
size_t input_size() override;
|
||||
|
||||
/**
|
||||
* @brief Get the biases of the batchnorm layer
|
||||
*
|
||||
* @return std::vector<float>
|
||||
*/
|
||||
std::vector<float> getBiases();
|
||||
size_t output_size() override;
|
||||
|
||||
/**
|
||||
* @brief Set the Running Mean
|
||||
*
|
||||
* @param running_mean_input
|
||||
*/
|
||||
void setRunningMean(const float* running_mean_input);
|
||||
void set_weights(void* input) override;
|
||||
|
||||
/**
|
||||
* @brief Get the Running Mean
|
||||
*
|
||||
*/
|
||||
std::vector<float> getRunningMean();
|
||||
size_t get_weights_size() override;
|
||||
|
||||
/**
|
||||
* @brief Set the Running Var
|
||||
*
|
||||
* @param running_mean_input
|
||||
*/
|
||||
void setRunningVar(const float* running_mean_input);
|
||||
void set_biases(void* input) override;
|
||||
|
||||
/**
|
||||
* @brief Get the Running Var
|
||||
*
|
||||
*/
|
||||
std::vector<float> getRunningVar();
|
||||
size_t get_biases_size() override;
|
||||
|
||||
/**
|
||||
* @brief Get output size
|
||||
*
|
||||
* @return int output size
|
||||
*/
|
||||
int getOutputSize();
|
||||
void set_running_mean(void* input);
|
||||
|
||||
/**
|
||||
* @brief Get input size
|
||||
*
|
||||
* @return int input size
|
||||
*/
|
||||
int getInputSize();
|
||||
size_t get_running_mean_size();
|
||||
|
||||
shape2d getOutputDims();
|
||||
void set_running_var(void* input);
|
||||
|
||||
size_t get_running_var_size();
|
||||
|
||||
private:
|
||||
shape2d inputSize;
|
||||
int inputChannels;
|
||||
float epsilon;
|
||||
CUDANet::Shape in_shape;
|
||||
CUDANet::Tensor epsilon;
|
||||
|
||||
int gridSize;
|
||||
CUDANet::Tensor running_mean;
|
||||
CUDANet::Tensor running_var;
|
||||
|
||||
#ifdef USE_CUDA
|
||||
CUDANet::Tensor weights;
|
||||
CUDANet::Tensor biases;
|
||||
|
||||
float* d_output;
|
||||
CUDANet::Tensor output;
|
||||
|
||||
float* d_running_mean;
|
||||
float* d_running_var;
|
||||
|
||||
float* d_length;
|
||||
float* d_epsilon;
|
||||
|
||||
float* d_weights;
|
||||
float* d_biases;
|
||||
|
||||
void initCUDA();
|
||||
void delCUDA();
|
||||
|
||||
/**
|
||||
* @brief Copy weights and biases to the device
|
||||
*
|
||||
*/
|
||||
void toCuda();
|
||||
|
||||
float* forwardCUDA(const float* d_input);
|
||||
|
||||
#endif
|
||||
|
||||
std::vector<float> weights;
|
||||
std::vector<float> biases;
|
||||
|
||||
std::vector<float> running_mean;
|
||||
std::vector<float> running_var;
|
||||
|
||||
Activation* activation;
|
||||
|
||||
float* forwardCPU(const float* input);
|
||||
|
||||
/**
|
||||
* @brief Initialize weights of the batchnorm layer with zeros
|
||||
*
|
||||
*/
|
||||
void initializeWeights();
|
||||
|
||||
/**
|
||||
* @brief Initialize biases of the batchnorm layer with zeros
|
||||
*
|
||||
*/
|
||||
void initializeBiases();
|
||||
|
||||
/**
|
||||
* @brief Initialize mean of the batchnorm layer with zeros
|
||||
*
|
||||
*/
|
||||
void initializeRunningMean();
|
||||
|
||||
/**
|
||||
* @brief Initialize sqrt of variance of the batchnorm layer with ones
|
||||
*
|
||||
*/
|
||||
void initializeRunningVar();
|
||||
CUDANet::Backend *backend;
|
||||
};
|
||||
|
||||
} // namespace CUDANet::Layers
|
||||
|
||||
#endif // CUDANET_BATCH_NORM_H
|
||||
@@ -1,5 +1,4 @@
|
||||
#ifndef CUDANET_CONCAT_LAYER_H
|
||||
#define CUDANET_CONCAT_LAYER_H
|
||||
#pragma once
|
||||
|
||||
#include "layer.hpp"
|
||||
|
||||
@@ -11,47 +10,27 @@ namespace CUDANet::Layers {
|
||||
*/
|
||||
class Concat {
|
||||
public:
|
||||
/**
|
||||
* @brief Create a new Concat layer
|
||||
*
|
||||
* @param inputASize Size of the first input
|
||||
* @param inputBSize Size of the second input
|
||||
*/
|
||||
Concat(const int inputASize, const int inputBSize);
|
||||
|
||||
/**
|
||||
* @brief Destroy the Concat layer
|
||||
*
|
||||
*/
|
||||
Concat(const CUDANet::Shape a_shape, const CUDANet::Shape b_shape, CUDANet::Backend *backend);
|
||||
Concat(const CUDANet::Shape a_shape, const CUDANet::Shape b_shape, CUDANet::DType dtype, CUDANet::Backend *backend);
|
||||
|
||||
~Concat();
|
||||
|
||||
/**
|
||||
* @brief Concatenates the two inputs
|
||||
*
|
||||
* @param d_input_A Device pointer to the first input
|
||||
* @param d_input_B Device pointer to the second input
|
||||
*
|
||||
* @return Device pointer to the output
|
||||
*/
|
||||
float* forward(const float* d_input_A, const float* d_input_B);
|
||||
CUDANet::Tensor& forward(CUDANet::Tensor& input_a, CUDANet::Tensor& input_b);
|
||||
|
||||
int getOutputSize();
|
||||
CUDANet::Shape output_shape();
|
||||
|
||||
private:
|
||||
int inputASize;
|
||||
int inputBSize;
|
||||
CUDANet::Shape a_shape;
|
||||
CUDANet::Shape b_shape;
|
||||
|
||||
float* forwardCPU(const float* input_A, const float* input_B);
|
||||
CUDANet::Shape out_shape;
|
||||
CUDANet::Tensor output;
|
||||
|
||||
#ifdef USE_CUDA
|
||||
float* d_output;
|
||||
float* forwardCUDA(const float* d_input_A, const float* d_input_B);
|
||||
CUDANet::Backend *backend;
|
||||
|
||||
void initCUDA();
|
||||
void delCUDA();
|
||||
#endif
|
||||
CUDANet::DType dtype;
|
||||
};
|
||||
|
||||
} // namespace CUDANet::Layers
|
||||
|
||||
#endif // CUDANET_CONCAT_LAYER_H
|
||||
|
||||
@@ -1,9 +1,5 @@
|
||||
#ifndef CUDANET_CONV_LAYER_H
|
||||
#define CUDANET_CONV_LAYER_H
|
||||
#pragma once
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "activation.hpp"
|
||||
#include "layer.hpp"
|
||||
|
||||
namespace CUDANet::Layers {
|
||||
@@ -12,149 +8,60 @@ namespace CUDANet::Layers {
|
||||
* @brief 2D convolutional layer
|
||||
*
|
||||
*/
|
||||
class Conv2d : public WeightedLayer, public TwoDLayer {
|
||||
class Conv2d : public CUDANet::Layer {
|
||||
public:
|
||||
/**
|
||||
* @brief Construct a new Conv 2d layer
|
||||
*
|
||||
* @param inputSize Width and height of the input matrix
|
||||
* @param inputChannels Number of channels in the input matrix
|
||||
* @param kernelSize Width and height of the convolution kernel
|
||||
* @param stride Convolution stride
|
||||
* @param numFilters Number of output filters
|
||||
* @param paddingSize Padding size
|
||||
* @param activationType Activation function type ('RELU', 'SIGMOID',
|
||||
* 'SOFTMAX' or 'NONE')
|
||||
*/
|
||||
Conv2d(
|
||||
shape2d inputSize,
|
||||
int inputChannels,
|
||||
shape2d kernelSize,
|
||||
shape2d stride,
|
||||
int numFilters,
|
||||
shape2d paddingSize,
|
||||
ActivationType activationType
|
||||
CUDANet::Shape input_shape,
|
||||
CUDANet::Shape kernel_shape,
|
||||
CUDANet::Shape stride_shape,
|
||||
CUDANet::Shape padding_shape,
|
||||
CUDANet::Backend* backend
|
||||
);
|
||||
Conv2d(
|
||||
CUDANet::Shape input_shape,
|
||||
CUDANet::Shape kernel_shape,
|
||||
CUDANet::Shape stride_shape,
|
||||
CUDANet::Shape padding_shape,
|
||||
CUDANet::DType dtype,
|
||||
CUDANet::Backend* backend
|
||||
);
|
||||
|
||||
/**
|
||||
* @brief Destroy the Conv 2d object
|
||||
*
|
||||
*/
|
||||
~Conv2d();
|
||||
|
||||
/**
|
||||
* @brief Forward pass of the convolutional layer
|
||||
*
|
||||
* @param d_input Device pointer to the input matrix
|
||||
* @return Device pointer to the output matrix
|
||||
*/
|
||||
float* forward(const float* d_input);
|
||||
CUDANet::Tensor& forward(CUDANet::Tensor& input) override;
|
||||
|
||||
/**
|
||||
* @brief Set the weights of the convolutional layer
|
||||
*
|
||||
* @param weights_input Pointer to the weights
|
||||
*/
|
||||
void setWeights(const float* weights_input);
|
||||
CUDANet::Shape input_shape() override;
|
||||
|
||||
/**
|
||||
* @brief Get the weights of the convolutional layer
|
||||
*
|
||||
* @return std::vector<float>
|
||||
*/
|
||||
std::vector<float> getWeights();
|
||||
CUDANet::Shape output_shape() override;
|
||||
|
||||
/**
|
||||
* @brief Set the biases of the convolutional layer
|
||||
*
|
||||
* @param biases_input Pointer to the biases
|
||||
*/
|
||||
void setBiases(const float* biases_input);
|
||||
size_t input_size() override;
|
||||
|
||||
/**
|
||||
* @brief Get the biases of the convolutional layer
|
||||
*
|
||||
* @return std::vector<float>
|
||||
*/
|
||||
std::vector<float> getBiases();
|
||||
size_t output_size();
|
||||
|
||||
/**
|
||||
* @brief Get output size
|
||||
*
|
||||
* @return int output size
|
||||
*/
|
||||
int getOutputSize();
|
||||
void set_weights(void* input) override;
|
||||
|
||||
/**
|
||||
* @brief Get input size
|
||||
*
|
||||
* @return int input size
|
||||
*/
|
||||
int getInputSize();
|
||||
size_t get_weights_size() override;
|
||||
|
||||
/**
|
||||
* @brief Get the padding size of the layer
|
||||
*
|
||||
* @return int
|
||||
*/
|
||||
shape2d getPaddingSize() {
|
||||
return paddingSize;
|
||||
}
|
||||
void set_biases(void* input) override;
|
||||
|
||||
shape2d getOutputDims();
|
||||
size_t get_biases_size() override;
|
||||
|
||||
CUDANet::Shape get_padding_shape();
|
||||
|
||||
private:
|
||||
// Inputs
|
||||
shape2d inputSize;
|
||||
int inputChannels;
|
||||
CUDANet::Backend* backend;
|
||||
|
||||
// Outputs
|
||||
shape2d outputSize;
|
||||
CUDANet::Shape in_shape;
|
||||
CUDANet::Shape out_shape;
|
||||
|
||||
// Kernel
|
||||
shape2d kernelSize;
|
||||
shape2d stride;
|
||||
shape2d paddingSize;
|
||||
int numFilters;
|
||||
CUDANet::Shape kernel_shape;
|
||||
CUDANet::Shape stride_shape;
|
||||
CUDANet::Shape padding_shape;
|
||||
|
||||
// Kernels
|
||||
std::vector<float> weights;
|
||||
std::vector<float> biases;
|
||||
CUDANet::Tensor weights;
|
||||
CUDANet::Tensor biases;
|
||||
|
||||
float* forwardCPU(const float* input);
|
||||
|
||||
// Cuda
|
||||
#ifdef USE_CUDA
|
||||
float* d_output;
|
||||
float* d_weights;
|
||||
float* d_biases;
|
||||
|
||||
float* forwardCUDA(const float* d_input);
|
||||
void initCUDA();
|
||||
void delCUDA();
|
||||
|
||||
/**
|
||||
* @brief Copy weights and biases to the device
|
||||
*
|
||||
*/
|
||||
void toCuda();
|
||||
#endif
|
||||
|
||||
Activation* activation;
|
||||
|
||||
/**
|
||||
* @brief Initialize weights of the convolutional layer with zeros
|
||||
*
|
||||
*/
|
||||
void initializeWeights();
|
||||
|
||||
/**
|
||||
* @brief Initialize biases of the convolutional layer with zeros
|
||||
*
|
||||
*/
|
||||
void initializeBiases();
|
||||
CUDANet::Tensor output;
|
||||
};
|
||||
|
||||
} // namespace CUDANet::Layers
|
||||
|
||||
#endif // CUDANET_CONV_LAYER_H
|
||||
|
||||
@@ -1,9 +1,6 @@
|
||||
#ifndef CUDANET_DENSE_LAYER_H
|
||||
#define CUDANET_DENSE_LAYER_H
|
||||
#pragma once
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "activation.hpp"
|
||||
#include "backend.hpp"
|
||||
#include "layer.hpp"
|
||||
|
||||
namespace CUDANet::Layers {
|
||||
@@ -12,121 +9,43 @@ namespace CUDANet::Layers {
|
||||
* @brief Dense (fully connected) layer
|
||||
*
|
||||
*/
|
||||
class Dense : public WeightedLayer {
|
||||
class Dense : public CUDANet::Layer {
|
||||
public:
|
||||
/**
|
||||
* @brief Construct a new Dense layer
|
||||
*
|
||||
* @param inputSize Size of the input vector
|
||||
* @param outputSize Size of the output vector
|
||||
* @param activationType Activation function type ('RELU', 'SIGMOID',
|
||||
* 'SOFTMAX' or 'NONE')
|
||||
*/
|
||||
Dense(int inputSize, int outputSize, Layers::ActivationType activationType);
|
||||
|
||||
/**
|
||||
* @brief Destroy the Dense layer
|
||||
*
|
||||
*/
|
||||
Dense(CUDANet::Shape input_shape, CUDANet::Shape output_shape, CUDANet::Backend *backend);
|
||||
Dense(CUDANet::Shape input_shape, CUDANet::Shape output_shape, CUDANet::DType dtype, CUDANet::Backend *backend);
|
||||
|
||||
~Dense();
|
||||
|
||||
/**
|
||||
* @brief Forward pass of the dense layer
|
||||
*
|
||||
* @param d_input Device pointer to the input vector
|
||||
* @return Device pointer to the output vector
|
||||
*/
|
||||
float* forward(const float* d_input);
|
||||
CUDANet::Tensor& forward(CUDANet::Tensor &input) override;
|
||||
|
||||
/**
|
||||
* @brief Set the weights of the layer
|
||||
*
|
||||
* @param weights Pointer to vector of weights
|
||||
*/
|
||||
void setWeights(const float* weights);
|
||||
CUDANet::Shape input_shape() override;
|
||||
|
||||
/**
|
||||
* @brief Get the weights of the layer
|
||||
*
|
||||
* @return Vector of weights
|
||||
*/
|
||||
std::vector<float> getWeights();
|
||||
CUDANet::Shape output_shape() override;
|
||||
|
||||
/**
|
||||
* @brief Set the biases of the layer
|
||||
*
|
||||
* @param biases Pointer to vector of biases
|
||||
*/
|
||||
void setBiases(const float* biases);
|
||||
size_t input_size() override;
|
||||
|
||||
/**
|
||||
* @brief Get the biases of the layer
|
||||
*
|
||||
* @return Vector of biases
|
||||
*/
|
||||
std::vector<float> getBiases();
|
||||
size_t output_size() override;
|
||||
|
||||
/**
|
||||
* @brief Get output size
|
||||
*
|
||||
* @return int output size
|
||||
*/
|
||||
int getOutputSize();
|
||||
void set_weights(void *input) override;
|
||||
|
||||
/**
|
||||
* @brief Get input size
|
||||
*
|
||||
* @return int input size
|
||||
*/
|
||||
int getInputSize();
|
||||
size_t get_weights_size() override;
|
||||
|
||||
void set_biases(void *input) override;
|
||||
|
||||
size_t get_biases_size() override;
|
||||
|
||||
private:
|
||||
int inputSize;
|
||||
int outputSize;
|
||||
CUDANet::Backend *backend;
|
||||
|
||||
std::vector<float> weights;
|
||||
std::vector<float> biases;
|
||||
CUDANet::Shape in_shape;
|
||||
CUDANet::Shape out_shape;
|
||||
|
||||
Layers::Activation* activation;
|
||||
|
||||
/**
|
||||
* @brief Initialize the weights to zeros
|
||||
*
|
||||
*/
|
||||
void initializeWeights();
|
||||
|
||||
/**
|
||||
* @brief Initialize the biases to zeros
|
||||
*
|
||||
*/
|
||||
void initializeBiases();
|
||||
|
||||
float* forwardCPU(const float* input);
|
||||
|
||||
#ifdef USE_CUDA
|
||||
float* d_output;
|
||||
|
||||
float* d_weights;
|
||||
float* d_biases;
|
||||
|
||||
// Precompute kernel launch parameters
|
||||
int forwardGridSize;
|
||||
int biasGridSize;
|
||||
|
||||
/**
|
||||
* @brief Copy the weights and biases to the device
|
||||
*
|
||||
*/
|
||||
void toCuda();
|
||||
|
||||
void initCUDA();
|
||||
void delCUDA();
|
||||
|
||||
float* forwardCUDA(const float* d_input);
|
||||
#endif
|
||||
CUDANet::Tensor weights;
|
||||
CUDANet::Tensor biases;
|
||||
|
||||
CUDANet::Tensor output;
|
||||
};
|
||||
|
||||
} // namespace CUDANet::Layers
|
||||
|
||||
#endif // CUDANET_DENSE_LAYER_H
|
||||
|
||||
@@ -1,66 +0,0 @@
|
||||
#ifndef CUDANET_INPUT_LAYER_H
|
||||
#define CUDANET_INPUT_LAYER_H
|
||||
|
||||
#include "layer.hpp"
|
||||
|
||||
namespace CUDANet::Layers {
|
||||
|
||||
/**
|
||||
* @brief Input layer, just copies the input to the device
|
||||
*
|
||||
*/
|
||||
class Input : public SequentialLayer {
|
||||
public:
|
||||
/**
|
||||
* @brief Create a new Input layer
|
||||
*
|
||||
* @param inputSize Size of the input vector
|
||||
*/
|
||||
explicit Input(int inputSize);
|
||||
|
||||
/**
|
||||
* @brief Destroy the Input layer
|
||||
*
|
||||
*/
|
||||
~Input();
|
||||
|
||||
/**
|
||||
* @brief Forward pass of the input layer. Just copies the input to the
|
||||
* device
|
||||
*
|
||||
* @param input Host pointer to the input vector
|
||||
* @return Device pointer to the output vector
|
||||
*/
|
||||
float* forward(const float* input);
|
||||
|
||||
/**
|
||||
* @brief Get output size
|
||||
*
|
||||
* @return int output size
|
||||
*/
|
||||
int getOutputSize();
|
||||
|
||||
/**
|
||||
* @brief Get input size
|
||||
*
|
||||
* @return int input size
|
||||
*/
|
||||
int getInputSize();
|
||||
|
||||
private:
|
||||
int inputSize;
|
||||
|
||||
float* forwardCPU(const float* input);
|
||||
|
||||
#ifdef USE_CUDA
|
||||
float* d_output;
|
||||
|
||||
float* forwardCUDA(const float* input);
|
||||
void initCUDA();
|
||||
void delCUDA();
|
||||
#endif
|
||||
};
|
||||
|
||||
} // namespace CUDANet::Layers
|
||||
|
||||
#endif // CUDANET_INPUT_LAYER_H
|
||||
@@ -1,124 +0,0 @@
|
||||
|
||||
#ifndef CUDANET_I_LAYER_H
|
||||
#define CUDANET_I_LAYER_H
|
||||
|
||||
#include <vector>
|
||||
|
||||
#define CUDANET_SAME_PADDING(inputSize, kernelSize, stride) \
|
||||
((stride - 1) * inputSize - stride + kernelSize) / 2;
|
||||
|
||||
typedef std::pair<int, int> shape2d;
|
||||
|
||||
namespace CUDANet::Layers {
|
||||
|
||||
|
||||
class TwoDLayer {
|
||||
|
||||
public:
|
||||
virtual shape2d getOutputDims() = 0;
|
||||
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* @brief Basic Sequential Layer
|
||||
*
|
||||
*/
|
||||
class SequentialLayer {
|
||||
public:
|
||||
/**
|
||||
* @brief Destroy the Sequential Layer
|
||||
*
|
||||
*/
|
||||
virtual ~SequentialLayer(){};
|
||||
|
||||
/**
|
||||
* @brief Forward propagation virtual function
|
||||
*
|
||||
* @param input Device pointer to the input
|
||||
* @return float* Device pointer to the output
|
||||
*/
|
||||
virtual float* forward(const float* input) = 0;
|
||||
|
||||
/**
|
||||
* @brief Get output size
|
||||
*
|
||||
* @return int output size
|
||||
*/
|
||||
virtual int getOutputSize() = 0;
|
||||
|
||||
/**
|
||||
* @brief Get input size
|
||||
*
|
||||
* @return int input size
|
||||
*/
|
||||
virtual int getInputSize() = 0;
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Base class for layers with weights and biases
|
||||
*/
|
||||
class WeightedLayer : public SequentialLayer {
|
||||
public:
|
||||
/**
|
||||
* @brief Destroy the ILayer object
|
||||
*
|
||||
*/
|
||||
virtual ~WeightedLayer(){};
|
||||
|
||||
/**
|
||||
* @brief Virtual function for forward pass
|
||||
*
|
||||
* @param input (Device) Pointer to the input
|
||||
* @return float* Device pointer to the output
|
||||
*/
|
||||
virtual float* forward(const float* input) = 0;
|
||||
|
||||
/**
|
||||
* @brief Virtual function for setting weights
|
||||
*
|
||||
* @param weights Pointer to the weights
|
||||
*/
|
||||
virtual void setWeights(const float* weights) = 0;
|
||||
|
||||
/**
|
||||
* @brief Virtual function for getting weights
|
||||
*
|
||||
*/
|
||||
virtual std::vector<float> getWeights() = 0;
|
||||
|
||||
/**
|
||||
* @brief Virtual function for setting biases
|
||||
*
|
||||
* @param biases Pointer to the biases
|
||||
*/
|
||||
virtual void setBiases(const float* biases) = 0;
|
||||
|
||||
/**
|
||||
* @brief Virtual function for getting biases
|
||||
*
|
||||
*/
|
||||
virtual std::vector<float> getBiases() = 0;
|
||||
|
||||
private:
|
||||
/**
|
||||
* @brief Initialize the weights
|
||||
*/
|
||||
virtual void initializeWeights() = 0;
|
||||
|
||||
/**
|
||||
* @brief Initialize the biases
|
||||
*/
|
||||
virtual void initializeBiases() = 0;
|
||||
|
||||
#ifdef USE_CUDA
|
||||
/**
|
||||
* @brief Copy the weights and biases to the device
|
||||
*/
|
||||
virtual void toCuda() = 0;
|
||||
#endif
|
||||
};
|
||||
|
||||
} // namespace CUDANet::Layers
|
||||
|
||||
#endif // CUDANET_I_LAYERH
|
||||
59
include/layers/max_pool.hpp
Normal file
59
include/layers/max_pool.hpp
Normal file
@@ -0,0 +1,59 @@
|
||||
#pragma once
|
||||
|
||||
#include "layer.hpp"
|
||||
|
||||
namespace CUDANet::Layers {
|
||||
|
||||
class MaxPool2d : public CUDANet::Layer {
|
||||
public:
|
||||
MaxPool2d(
|
||||
CUDANet::Shape input_shape,
|
||||
CUDANet::Shape pool_shape,
|
||||
CUDANet::Shape stride_shape,
|
||||
CUDANet::Shape padding_shape,
|
||||
CUDANet::Backend* backend
|
||||
);
|
||||
MaxPool2d(
|
||||
CUDANet::Shape input_shape,
|
||||
CUDANet::Shape pool_shape,
|
||||
CUDANet::Shape stride_shape,
|
||||
CUDANet::Shape padding_shape,
|
||||
CUDANet::DType dtype,
|
||||
CUDANet::Backend* backend
|
||||
);
|
||||
~MaxPool2d();
|
||||
|
||||
CUDANet::Tensor& forward(CUDANet::Tensor &input) override;
|
||||
|
||||
CUDANet::Shape input_shape() override;
|
||||
|
||||
CUDANet::Shape output_shape() override;
|
||||
|
||||
size_t input_size() override;
|
||||
|
||||
size_t output_size() override;
|
||||
|
||||
void set_weights(void *input) override;
|
||||
|
||||
size_t get_weights_size() override;
|
||||
|
||||
void set_biases(void *input) override;
|
||||
|
||||
size_t get_biases_size() override;
|
||||
|
||||
|
||||
|
||||
private:
|
||||
CUDANet::Shape in_shape;
|
||||
|
||||
CUDANet::Shape pool_shape;
|
||||
CUDANet::Shape stride_shape;
|
||||
CUDANet::Shape padding_shape;
|
||||
|
||||
CUDANet::Shape out_shape;
|
||||
CUDANet::Tensor output;
|
||||
|
||||
CUDANet::Backend *backend;
|
||||
};
|
||||
|
||||
} // namespace CUDANet::Layers
|
||||
@@ -1,63 +0,0 @@
|
||||
#ifndef CUDANET_MAX_POOLING_H
|
||||
#define CUDANET_MAX_POOLING_H
|
||||
|
||||
#include "activation.hpp"
|
||||
#include "layer.hpp"
|
||||
|
||||
namespace CUDANet::Layers {
|
||||
|
||||
class MaxPooling2d : public SequentialLayer, public TwoDLayer {
|
||||
public:
|
||||
MaxPooling2d(
|
||||
shape2d inputSize,
|
||||
int nChannels,
|
||||
shape2d poolingSize,
|
||||
shape2d stride,
|
||||
shape2d padding,
|
||||
ActivationType activationType
|
||||
);
|
||||
~MaxPooling2d();
|
||||
|
||||
float* forward(const float* input);
|
||||
|
||||
/**
|
||||
* @brief Get output size
|
||||
*
|
||||
* @return int output size
|
||||
*/
|
||||
int getOutputSize();
|
||||
|
||||
/**
|
||||
* @brief Get input size
|
||||
*
|
||||
* @return int input size
|
||||
*/
|
||||
int getInputSize();
|
||||
|
||||
shape2d getOutputDims();
|
||||
|
||||
private:
|
||||
shape2d inputSize;
|
||||
int nChannels;
|
||||
shape2d poolingSize;
|
||||
shape2d stride;
|
||||
shape2d padding;
|
||||
|
||||
shape2d outputSize;
|
||||
|
||||
Activation* activation;
|
||||
|
||||
float* forwardCPU(const float* input);
|
||||
|
||||
#ifdef USE_CUDA
|
||||
float* d_output;
|
||||
float* forwardCUDA(const float* d_input);
|
||||
|
||||
void initCUDA();
|
||||
void delCUDA();
|
||||
#endif
|
||||
};
|
||||
|
||||
} // namespace CUDANet::Layers
|
||||
|
||||
#endif // CUDANET_MAX_POOLING_H
|
||||
@@ -1,59 +0,0 @@
|
||||
#ifndef CUDANET_OUTPUT_LAYER_H
|
||||
#define CUDANET_OUTPUT_LAYER_H
|
||||
|
||||
#include "layer.hpp"
|
||||
|
||||
namespace CUDANet::Layers {
|
||||
|
||||
class Output : public SequentialLayer {
|
||||
public:
|
||||
/**
|
||||
* @brief Create a new Output layer
|
||||
*
|
||||
* @param inputSize Size of the input vector
|
||||
*/
|
||||
explicit Output(int inputSize);
|
||||
|
||||
/**
|
||||
* @brief Destroy the Output layer
|
||||
*
|
||||
*/
|
||||
~Output();
|
||||
|
||||
/**
|
||||
* @brief Forward pass of the output layer. Just copies the input from
|
||||
* device to host
|
||||
*
|
||||
* @param input Device pointer to the input vector
|
||||
* @return Host pointer to the output vector
|
||||
*/
|
||||
float* forward(const float* input);
|
||||
|
||||
/**
|
||||
* @brief Get output size
|
||||
*
|
||||
* @return int output size
|
||||
*/
|
||||
int getOutputSize();
|
||||
|
||||
/**
|
||||
* @brief Get input size
|
||||
*
|
||||
* @return int input size
|
||||
*/
|
||||
int getInputSize();
|
||||
|
||||
private:
|
||||
int inputSize;
|
||||
float* h_output;
|
||||
|
||||
float* forwardCPU(const float* input);
|
||||
|
||||
#ifdef USE_CUDA
|
||||
float* forwardCUDA(const float* input);
|
||||
#endif
|
||||
};
|
||||
|
||||
} // namespace CUDANet::Layers
|
||||
|
||||
#endif // CUDANET_OUTPUT_LAYER_H
|
||||
55
include/model.hpp
Normal file
55
include/model.hpp
Normal file
@@ -0,0 +1,55 @@
|
||||
#pragma once
|
||||
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
|
||||
#include "layer.hpp"
|
||||
#include "module.hpp"
|
||||
|
||||
namespace CUDANet {
|
||||
|
||||
enum TensorType {
|
||||
WEIGHT,
|
||||
BIAS,
|
||||
RUNNING_MEAN,
|
||||
RUNNING_VAR
|
||||
};
|
||||
|
||||
struct TensorInfo {
|
||||
std::string name;
|
||||
TensorType type;
|
||||
int size;
|
||||
int offset;
|
||||
};
|
||||
|
||||
class Model {
|
||||
public:
|
||||
Model(const CUDANet::Shape input_shape, const CUDANet::Shape output_shape);
|
||||
~Model();
|
||||
|
||||
virtual CUDANet::Tensor& predict(CUDANet::Tensor& input);
|
||||
|
||||
CUDANet::Layer* get_layer(const std::string& name);
|
||||
|
||||
void register_layer(const std::string& name, Layer* layer);
|
||||
|
||||
void register_module(Module& module);
|
||||
|
||||
void load_weights(const std::string& path);
|
||||
|
||||
bool validate();
|
||||
|
||||
void print_summary();
|
||||
|
||||
protected:
|
||||
CUDANet::Shape in_shape;
|
||||
CUDANet::Shape out_shape;
|
||||
|
||||
CUDANet::Tensor output;
|
||||
|
||||
std::vector<std::pair<std::string, Layer*>> layers;
|
||||
std::unordered_map<std::string, Layer*> layer_map;
|
||||
};
|
||||
|
||||
} // namespace CUDANet
|
||||
@@ -1,61 +0,0 @@
|
||||
#ifndef CUDANET_MODEL_H
|
||||
#define CUDANET_MODEL_H
|
||||
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
|
||||
#include "input.hpp"
|
||||
#include "layer.hpp"
|
||||
#include "module.hpp"
|
||||
#include "output.hpp"
|
||||
|
||||
namespace CUDANet {
|
||||
|
||||
enum TensorType {
|
||||
WEIGHT,
|
||||
BIAS,
|
||||
RUNNING_MEAN,
|
||||
RUNNING_VAR
|
||||
};
|
||||
|
||||
struct TensorInfo {
|
||||
std::string name;
|
||||
TensorType type;
|
||||
int size;
|
||||
int offset;
|
||||
};
|
||||
|
||||
class Model {
|
||||
public:
|
||||
Model(const shape2d inputSize, const int inputChannels, const int outputSize);
|
||||
Model(const Model& other);
|
||||
~Model();
|
||||
|
||||
virtual float* predict(const float* input);
|
||||
|
||||
void addLayer(const std::string& name, Layers::SequentialLayer* layer);
|
||||
Layers::SequentialLayer* getLayer(const std::string& name);
|
||||
|
||||
void loadWeights(const std::string& path);
|
||||
|
||||
bool validate();
|
||||
|
||||
void printSummary();
|
||||
|
||||
protected:
|
||||
Layers::Input* inputLayer;
|
||||
Layers::Output* outputLayer;
|
||||
|
||||
shape2d inputSize;
|
||||
int inputChannels;
|
||||
|
||||
int outputSize;
|
||||
|
||||
std::vector<std::pair<std::string, Layers::SequentialLayer*>> layers;
|
||||
std::unordered_map<std::string, Layers::SequentialLayer*> layerMap;
|
||||
};
|
||||
|
||||
} // namespace CUDANet
|
||||
|
||||
#endif // CUDANET_MODEL_H
|
||||
@@ -1,32 +0,0 @@
|
||||
#ifndef CUDANET_MODULE_H
|
||||
#define CUDANET_MODULE_H
|
||||
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
|
||||
#include "layer.hpp"
|
||||
|
||||
namespace CUDANet {
|
||||
|
||||
class Module : public Layers::SequentialLayer {
|
||||
public:
|
||||
virtual float* forward(const float* d_input) = 0;
|
||||
|
||||
int getOutputSize();
|
||||
int getInputSize();
|
||||
|
||||
void addLayer(const std::string& name, Layers::SequentialLayer* layer);
|
||||
|
||||
const std::vector<std::pair<std::string, Layers::SequentialLayer*>>& getLayers() const;
|
||||
|
||||
protected:
|
||||
std::vector<std::pair<std::string, Layers::SequentialLayer*>> layers;
|
||||
|
||||
int outputSize;
|
||||
int inputSize;
|
||||
};
|
||||
|
||||
} // namespace CUDANet
|
||||
|
||||
#endif
|
||||
31
include/module.hpp
Normal file
31
include/module.hpp
Normal file
@@ -0,0 +1,31 @@
|
||||
#pragma once
|
||||
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
|
||||
#include "layer.hpp"
|
||||
|
||||
namespace CUDANet {
|
||||
|
||||
class Module {
|
||||
public:
|
||||
CUDANet::Shape input_shape();
|
||||
|
||||
CUDANet::Shape output_shape();
|
||||
|
||||
void register_layer(const std::string& name, Layer* layer);
|
||||
|
||||
void register_module(Module& module);
|
||||
|
||||
const std::vector<std::pair<std::string, Layer*>>& get_layers() const;
|
||||
|
||||
protected:
|
||||
std::vector<std::pair<std::string, Layer*>> layers;
|
||||
|
||||
CUDANet::Shape in_shape;
|
||||
CUDANet::Shape out_shape;
|
||||
};
|
||||
|
||||
} // namespace CUDANet
|
||||
117
include/shape.hpp
Normal file
117
include/shape.hpp
Normal file
@@ -0,0 +1,117 @@
|
||||
#pragma once
|
||||
|
||||
#ifndef __host__
|
||||
#define __host__
|
||||
#endif
|
||||
|
||||
#ifndef __device__
|
||||
#define __device__
|
||||
#endif
|
||||
|
||||
#include <format>
|
||||
#include <stdexcept>
|
||||
#include <vector>
|
||||
|
||||
namespace CUDANet {
|
||||
|
||||
struct Shape {
|
||||
static constexpr size_t MAX_DIMS = 8;
|
||||
|
||||
size_t dims[MAX_DIMS];
|
||||
size_t ndim;
|
||||
|
||||
__host__ __device__ Shape() : ndim(0) {
|
||||
for (int i = 0; i < MAX_DIMS; i++) dims[i] = 0;
|
||||
}
|
||||
|
||||
__host__ Shape(std::initializer_list<size_t> list) : ndim(list.size()) {
|
||||
if (ndim > MAX_DIMS) {
|
||||
throw std::runtime_error("Too many dimensions");
|
||||
}
|
||||
size_t i = 0;
|
||||
for (auto val : list) {
|
||||
dims[i++] = val;
|
||||
}
|
||||
for (; i < MAX_DIMS; i++) dims[i] = 0;
|
||||
}
|
||||
|
||||
__host__ Shape(const std::vector<size_t>& vec) : ndim(vec.size()) {
|
||||
if (ndim > MAX_DIMS) {
|
||||
throw std::runtime_error("Too many dimensions");
|
||||
}
|
||||
for (size_t i = 0; i < ndim; i++) {
|
||||
dims[i] = vec[i];
|
||||
}
|
||||
for (size_t i = ndim; i < MAX_DIMS; i++) dims[i] = 0;
|
||||
}
|
||||
|
||||
__host__ __device__ size_t operator[](size_t idx) const {
|
||||
return dims[idx];
|
||||
}
|
||||
|
||||
__host__ __device__ size_t& operator[](size_t idx) {
|
||||
return dims[idx];
|
||||
}
|
||||
|
||||
__host__ __device__ size_t size() const { return ndim; }
|
||||
|
||||
__host__ bool operator==(const Shape& other) const {
|
||||
if (ndim != other.ndim) return false;
|
||||
for (size_t i = 0; i < ndim; i++) {
|
||||
if (dims[i] != other.dims[i]) return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
__host__ bool operator!=(const Shape& other) const {
|
||||
return !(*this == other);
|
||||
}
|
||||
|
||||
__host__ __device__ bool empty() const {
|
||||
return ndim == 0;
|
||||
}
|
||||
|
||||
|
||||
};
|
||||
|
||||
std::string format_shape(const Shape& shape) {
|
||||
std::string result;
|
||||
for (size_t i = 0; i < shape.size(); ++i) {
|
||||
if (i > 0) result += ", ";
|
||||
result += std::to_string(shape[i]);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
class InvalidShapeException : public std::runtime_error {
|
||||
public:
|
||||
InvalidShapeException(
|
||||
const std::string& param_name,
|
||||
size_t expected,
|
||||
size_t actual
|
||||
)
|
||||
: std::runtime_error(
|
||||
std::format(
|
||||
"Invalid {} shape. Expected {}, actual {}",
|
||||
param_name,
|
||||
expected,
|
||||
actual
|
||||
)
|
||||
) {}
|
||||
|
||||
InvalidShapeException(
|
||||
const std::string& message,
|
||||
const Shape& shape_a,
|
||||
const Shape& shape_b
|
||||
)
|
||||
: std::runtime_error(
|
||||
std::format(
|
||||
"{}. Shape A: [{}], Shape B: [{}]",
|
||||
message,
|
||||
format_shape(shape_a),
|
||||
format_shape(shape_b)
|
||||
)
|
||||
) {}
|
||||
};
|
||||
|
||||
} // namespace CUDANet
|
||||
64
include/tensor.hpp
Normal file
64
include/tensor.hpp
Normal file
@@ -0,0 +1,64 @@
|
||||
#pragma once
|
||||
|
||||
#include <cstddef>
|
||||
#include <vector>
|
||||
|
||||
#include "backend.hpp"
|
||||
#include "shape.hpp"
|
||||
|
||||
namespace CUDANet
|
||||
{
|
||||
|
||||
enum class DType
|
||||
{
|
||||
FLOAT32,
|
||||
// FLOAT16, // Not implemented yet
|
||||
// INT32, // Not implemented yet
|
||||
};
|
||||
|
||||
size_t dtype_size(DType dtype);
|
||||
|
||||
// Forward declaration
|
||||
class Backend;
|
||||
|
||||
class Tensor
|
||||
{
|
||||
public:
|
||||
|
||||
Tensor() = default;
|
||||
Tensor(Shape shape, CUDANet::Backend* backend);
|
||||
Tensor(Shape shape, DType dtype, CUDANet::Backend* backend);
|
||||
|
||||
Tensor(Tensor&& other) noexcept;
|
||||
Tensor& operator=(Tensor&& other) noexcept;
|
||||
Tensor(const Tensor&) = delete;
|
||||
Tensor& operator=(const Tensor&) = delete;
|
||||
|
||||
~Tensor();
|
||||
|
||||
DType get_dtype() const;
|
||||
|
||||
size_t size() const;
|
||||
size_t numel() const;
|
||||
|
||||
void* device_ptr() const;
|
||||
void* device_ptr();
|
||||
|
||||
void zero();
|
||||
|
||||
void fill(int value);
|
||||
|
||||
void set_data(void *data);
|
||||
|
||||
private:
|
||||
Shape shape;
|
||||
DType dtype;
|
||||
|
||||
size_t total_elms;
|
||||
size_t total_size;
|
||||
|
||||
CUDANet::Backend* backend;
|
||||
void* d_ptr;
|
||||
};
|
||||
|
||||
} // namespace CUDANet
|
||||
@@ -1,26 +0,0 @@
|
||||
#ifndef CUDANET_HELPER_H
|
||||
#define CUDANET_HELPER_H
|
||||
|
||||
#include <cuda_runtime.h>
|
||||
#include <cstdio>
|
||||
|
||||
#ifndef BLOCK_SIZE
|
||||
#define BLOCK_SIZE 128
|
||||
#endif // BLOCK_SIZE
|
||||
|
||||
/**
|
||||
* @brief CUDA error checking macro
|
||||
*
|
||||
*/
|
||||
#define CUDA_CHECK(call) \
|
||||
do { \
|
||||
cudaError_t result = call; \
|
||||
if (result != cudaSuccess) { \
|
||||
fprintf(stderr, "CUDA error at %s:%d code=%d(%s) \"%s\" \n", \
|
||||
__FILE__, __LINE__, static_cast<unsigned int>(result), \
|
||||
cudaGetErrorString(result), #call); \
|
||||
exit(EXIT_FAILURE); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#endif // CUDANET_HELPER_H
|
||||
@@ -1,63 +0,0 @@
|
||||
#ifndef CUDANET_VECTOR_H
|
||||
#define CUDANET_VECTOR_H
|
||||
|
||||
namespace CUDANet::Utils {
|
||||
|
||||
|
||||
/**
|
||||
* @brief Utility function that prints a vector
|
||||
*
|
||||
* @param d_vec Pointer to the vector on device
|
||||
* @param length Length of the vector
|
||||
*/
|
||||
void print_vec(const float *d_vec, const unsigned int length);
|
||||
|
||||
/**
|
||||
* @brief Utility function that clears a vector
|
||||
*
|
||||
* @param d_vector Pointer to the vector on device
|
||||
* @param len Length of the vector
|
||||
*/
|
||||
void clear(float *d_vector, const unsigned int len);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Utility function that returns the sum of a vector
|
||||
*
|
||||
* @param d_vec Pointer to the vector
|
||||
* @param length Length of the vector
|
||||
*/
|
||||
void sum(const float *d_vec, float *d_sum, const unsigned int length);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Get the max of a vector
|
||||
*
|
||||
* @param d_vec Pointer to the vector
|
||||
* @param length Length of the vector
|
||||
*/
|
||||
void max(const float *d_vec, float *d_max, const unsigned int length);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Compute the mean of the vector
|
||||
*
|
||||
* @param d_vec Device pointer to the vector
|
||||
* @param d_mean Device pointer to the mean
|
||||
* @param d_length Device pointer to the length
|
||||
* @param length Length of the vector
|
||||
*/
|
||||
void mean(const float *d_vec, float *d_mean, float *d_length, int length);
|
||||
|
||||
/**
|
||||
* @brief Compute the variance of a vector
|
||||
*
|
||||
* @param d_vec
|
||||
* @param d_var
|
||||
* @param length
|
||||
*/
|
||||
void var(float *d_vec, float *d_var, float *d_length, const unsigned int length);
|
||||
|
||||
} // namespace CUDANet::Utils
|
||||
|
||||
#endif // CUDANET_VECTOR_H
|
||||
40
src/backend_factory.cpp
Normal file
40
src/backend_factory.cpp
Normal file
@@ -0,0 +1,40 @@
|
||||
#include <stdexcept>
|
||||
#include <memory>
|
||||
|
||||
#ifdef USE_CUDA
|
||||
#include "backend/cuda/cuda.cuh"
|
||||
#endif
|
||||
|
||||
#include "backend.hpp"
|
||||
|
||||
namespace CUDANet {
|
||||
|
||||
std::unique_ptr<Backend> BackendFactory::create(BackendType backend_type, const BackendConfig& config) {
|
||||
switch (backend_type)
|
||||
{
|
||||
case BackendType::CUDA_BACKEND:
|
||||
{
|
||||
#ifdef USE_CUDA
|
||||
|
||||
if (!CUDANet::Backends::CUDA::is_cuda_available()) {
|
||||
throw std::runtime_error("No CUDA devices found");
|
||||
}
|
||||
|
||||
auto cuda = std::make_unique<CUDANet::Backends::CUDA>(config);
|
||||
return cuda;
|
||||
|
||||
#else
|
||||
throw std::runtime_error("Library was compiled without CUDA support.");
|
||||
#endif
|
||||
}
|
||||
break;
|
||||
|
||||
default:
|
||||
throw std::runtime_error("Invalid backend");
|
||||
break;
|
||||
}
|
||||
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
} // namespace CUDANet
|
||||
76
src/backends/cuda/cuda.cu
Normal file
76
src/backends/cuda/cuda.cu
Normal file
@@ -0,0 +1,76 @@
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
#include <cstdio>
|
||||
#include <cstdlib>
|
||||
#include <format>
|
||||
|
||||
#include "backend/cuda/cuda.cuh"
|
||||
#include "tensor.hpp"
|
||||
|
||||
using namespace CUDANet::Backends;
|
||||
|
||||
|
||||
CUDA::CUDA(const BackendConfig& config) {
|
||||
device_id = config.device_id < 0 ? 0 : config.device_id;
|
||||
supported_dtypes = {DType::FLOAT32};
|
||||
default_dtype = DType::FLOAT32;
|
||||
initialize();
|
||||
}
|
||||
|
||||
bool CUDA::is_cuda_available() {
|
||||
int device_count;
|
||||
cudaError_t result = cudaGetDeviceCount(&device_count);
|
||||
|
||||
// Return false instead of crashing
|
||||
if (result != cudaSuccess || device_count == 0) {
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void CUDA::initialize() {
|
||||
|
||||
int device_count;
|
||||
CUDA_CHECK(cudaGetDeviceCount(&device_count));
|
||||
if (device_id >= device_count) {
|
||||
throw std::runtime_error(std::format("Invalid device id {}, only {} devices available", device_id, device_count));
|
||||
}
|
||||
|
||||
CUDA_CHECK(cudaSetDevice(device_id));
|
||||
|
||||
cudaDeviceProp deviceProp;
|
||||
CUDA_CHECK(cudaGetDeviceProperties(&deviceProp, device_id));
|
||||
|
||||
std::printf("Using CUDA device %d: %s\n", device_id, deviceProp.name);
|
||||
}
|
||||
|
||||
bool CUDA::supports_dtype(DType dtype) const {
|
||||
return supported_dtypes.contains(dtype);
|
||||
}
|
||||
|
||||
void CUDA::set_default_dtype(DType dtype) {
|
||||
if (!supported_dtypes.contains(dtype)) {
|
||||
throw std::runtime_error("Unsupported dtype");
|
||||
}
|
||||
|
||||
default_dtype = dtype;
|
||||
}
|
||||
|
||||
CUDANet::DType CUDA::get_default_dtype() const {
|
||||
if (default_dtype) {
|
||||
return default_dtype.value();
|
||||
}
|
||||
|
||||
const_cast<CUDA*>(this)->default_dtype = DType::FLOAT32;
|
||||
return DType::FLOAT32;
|
||||
}
|
||||
|
||||
void* CUDA::allocate(size_t bytes) {
|
||||
void* d_ptr = nullptr;
|
||||
CUDA_CHECK(cudaMalloc(&d_ptr, bytes));
|
||||
return d_ptr;
|
||||
}
|
||||
|
||||
void CUDA::deallocate(void* ptr) {
|
||||
CUDA_CHECK(cudaFree(ptr));
|
||||
}
|
||||
@@ -1,12 +1,19 @@
|
||||
#include "activation_functions.cuh"
|
||||
#include "cuda_helper.cuh"
|
||||
#include "backend/cuda/kernels/activation_functions.cuh"
|
||||
|
||||
using namespace CUDANet;
|
||||
|
||||
__global__ void Kernels::sigmoid(
|
||||
template
|
||||
__global__ void Kernels::sigmoid<float>(
|
||||
const float* __restrict__ src,
|
||||
float* __restrict__ dst,
|
||||
const unsigned int len
|
||||
);
|
||||
|
||||
template <typename T>
|
||||
__global__ void Kernels::sigmoid(
|
||||
const T* __restrict__ src,
|
||||
T* __restrict__ dst,
|
||||
const unsigned int len
|
||||
) {
|
||||
int stride = gridDim.x * blockDim.x;
|
||||
int tid = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
@@ -16,10 +23,17 @@ __global__ void Kernels::sigmoid(
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void Kernels::relu(
|
||||
template __global__ void Kernels::relu<float>(
|
||||
const float* __restrict__ src,
|
||||
float* __restrict__ dst,
|
||||
const unsigned int len
|
||||
);
|
||||
|
||||
template <typename T>
|
||||
__global__ void Kernels::relu(
|
||||
const T* __restrict__ src,
|
||||
T* __restrict__ dst,
|
||||
const unsigned int len
|
||||
) {
|
||||
int stride = gridDim.x * blockDim.x;
|
||||
int tid = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
|
||||
@@ -1,60 +1,71 @@
|
||||
#include <iostream>
|
||||
|
||||
#include "convolution.cuh"
|
||||
#include "backend/cuda/kernels/convolution.cuh"
|
||||
|
||||
using namespace CUDANet;
|
||||
|
||||
__global__ void Kernels::convolution(
|
||||
template __global__ void Kernels::convolution<float>(
|
||||
const float* __restrict__ d_input,
|
||||
const float* __restrict__ d_kernel,
|
||||
const float* __restrict__ d_bias,
|
||||
float* __restrict__ d_output,
|
||||
const shape2d inputSize,
|
||||
const int nChannels,
|
||||
const shape2d paddingSize,
|
||||
const shape2d kernelSize,
|
||||
const shape2d stride,
|
||||
const int nFilters,
|
||||
const shape2d outputSize
|
||||
const Shape input_shape,
|
||||
const Shape padding_shape,
|
||||
const Shape kernel_shape,
|
||||
const Shape stride_shape,
|
||||
const Shape output_shape
|
||||
);
|
||||
|
||||
template <typename T>
|
||||
__global__ void Kernels::convolution(
|
||||
const T* __restrict__ d_input,
|
||||
const T* __restrict__ d_kernel,
|
||||
const T* __restrict__ d_bias,
|
||||
T* __restrict__ d_output,
|
||||
const Shape input_shape,
|
||||
const Shape padding_shape,
|
||||
const Shape kernel_shape,
|
||||
const Shape stride_shape,
|
||||
const Shape output_shape
|
||||
) {
|
||||
int j = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
int i = blockDim.y * blockIdx.y + threadIdx.y;
|
||||
int f = blockDim.z * blockIdx.z + threadIdx.z;
|
||||
|
||||
if (i >= outputSize.first || j >= outputSize.second || f >= nFilters) {
|
||||
if (i >= output_shape[0] || j >= output_shape[1] || f >= output_shape[2]) {
|
||||
return;
|
||||
}
|
||||
|
||||
float sum = 0.0f;
|
||||
T sum = static_cast<T>(0);
|
||||
|
||||
// Iterate over kernel and input matrix
|
||||
for (int c = 0; c < nChannels; c++) {
|
||||
for (int k = 0; k < kernelSize.first; k++) {
|
||||
for (int l = 0; l < kernelSize.second; l++) {
|
||||
for (int c = 0; c < input_shape[2]; c++) {
|
||||
for (int k = 0; k < kernel_shape[0]; k++) {
|
||||
for (int l = 0; l < kernel_shape[1]; l++) {
|
||||
// if i, j is in the padding region
|
||||
if (i * stride.first + k < paddingSize.first ||
|
||||
i * stride.first + k >=
|
||||
(inputSize.first + paddingSize.first) ||
|
||||
j * stride.second + l < paddingSize.second ||
|
||||
j * stride.second + l >=
|
||||
(inputSize.second + paddingSize.second)) {
|
||||
if (i * stride_shape[0] + k < padding_shape[0] ||
|
||||
i * stride_shape[0] + k >=
|
||||
(input_shape[0] + padding_shape[0]) ||
|
||||
j * stride_shape[1] + l < padding_shape[1] ||
|
||||
j * stride_shape[1] + l >=
|
||||
(input_shape[1] + padding_shape[1])) {
|
||||
continue;
|
||||
}
|
||||
|
||||
int kernelIndex =
|
||||
f * kernelSize.first * kernelSize.second * nChannels +
|
||||
c * kernelSize.first * kernelSize.second +
|
||||
k * kernelSize.second + l;
|
||||
int inputIndex = c * inputSize.first * inputSize.second +
|
||||
(i * stride.first + k - paddingSize.first) *
|
||||
inputSize.second +
|
||||
(j * stride.second + l - paddingSize.second);
|
||||
int kernel_idx =
|
||||
f * kernel_shape[0] * kernel_shape[1] * input_shape[2] +
|
||||
c * kernel_shape[0] * kernel_shape[1] +
|
||||
k * kernel_shape[1] + l;
|
||||
int inputIndex = c * input_shape[0] * input_shape[1] +
|
||||
(i * stride_shape[0] + k - padding_shape[0]) *
|
||||
input_shape[1] +
|
||||
(j * stride_shape[1] + l - padding_shape[1]);
|
||||
|
||||
sum += d_kernel[kernelIndex] * d_input[inputIndex];
|
||||
sum += d_kernel[kernel_idx] * d_input[inputIndex];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
d_output[f * outputSize.first * outputSize.second + i * outputSize.second + j] =
|
||||
d_output[f * output_shape[0] * output_shape[1] + i * output_shape[1] + j] =
|
||||
sum + d_bias[f];
|
||||
}
|
||||
@@ -1,19 +1,28 @@
|
||||
#include "cuda_helper.cuh"
|
||||
#include "matmul.cuh"
|
||||
#include "backend/cuda/cuda.cuh"
|
||||
#include "backend/cuda/kernels/matmul.cuh"
|
||||
|
||||
using namespace CUDANet;
|
||||
|
||||
__global__ void Kernels::mat_vec_mul(
|
||||
template __global__ void Kernels::mat_vec_mul<float>(
|
||||
const float* __restrict__ d_matrix,
|
||||
const float* __restrict__ d_vector,
|
||||
float* __restrict__ d_output,
|
||||
const unsigned int w,
|
||||
const unsigned int h
|
||||
);
|
||||
|
||||
template <typename T>
|
||||
__global__ void Kernels::mat_vec_mul(
|
||||
const T* __restrict__ d_matrix,
|
||||
const T* __restrict__ d_vector,
|
||||
T* __restrict__ d_output,
|
||||
const unsigned int w,
|
||||
const unsigned int h
|
||||
) {
|
||||
int tid = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
|
||||
if (tid < h) {
|
||||
float temp = 0.0f;
|
||||
T temp = static_cast<T>(0);
|
||||
|
||||
for (unsigned int j = 0; j < w; j++) {
|
||||
temp += d_matrix[tid * w + j] * d_vector[j];
|
||||
@@ -23,11 +32,19 @@ __global__ void Kernels::mat_vec_mul(
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void Kernels::vec_vec_add(
|
||||
template __global__ void Kernels::vec_vec_add<float>(
|
||||
const float* __restrict__ d_vector1,
|
||||
const float* __restrict__ d_vector2,
|
||||
float* __restrict__ d_output,
|
||||
const unsigned int w
|
||||
);
|
||||
|
||||
template <typename T>
|
||||
__global__ void Kernels::vec_vec_add(
|
||||
const T* __restrict__ d_vector1,
|
||||
const T* __restrict__ d_vector2,
|
||||
T* __restrict__ d_output,
|
||||
const unsigned int w
|
||||
) {
|
||||
int tid = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
if (tid >= w) {
|
||||
@@ -36,11 +53,19 @@ __global__ void Kernels::vec_vec_add(
|
||||
d_output[tid] = d_vector1[tid] + d_vector2[tid];
|
||||
}
|
||||
|
||||
__global__ void Kernels::vec_vec_sub(
|
||||
template __global__ void Kernels::vec_vec_sub<float>(
|
||||
const float* __restrict__ d_vector1,
|
||||
const float* __restrict__ d_vector2,
|
||||
float* __restrict__ d_output,
|
||||
const unsigned int w
|
||||
);
|
||||
|
||||
template <typename T>
|
||||
__global__ void Kernels::vec_vec_sub(
|
||||
const T* __restrict__ d_vector1,
|
||||
const T* __restrict__ d_vector2,
|
||||
T* __restrict__ d_output,
|
||||
const unsigned int w
|
||||
) {
|
||||
int tid = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
if (tid >= w) {
|
||||
@@ -49,11 +74,19 @@ __global__ void Kernels::vec_vec_sub(
|
||||
d_output[tid] = d_vector1[tid] - d_vector2[tid];
|
||||
}
|
||||
|
||||
__global__ void Kernels::vec_vec_mul(
|
||||
template __global__ void Kernels::vec_vec_mul<float>(
|
||||
const float* __restrict__ d_vector1,
|
||||
const float* __restrict__ d_vector2,
|
||||
float* __restrict__ d_output,
|
||||
const unsigned int w
|
||||
);
|
||||
|
||||
template <typename T>
|
||||
__global__ void Kernels::vec_vec_mul(
|
||||
const T* __restrict__ d_vector1,
|
||||
const T* __restrict__ d_vector2,
|
||||
T* __restrict__ d_output,
|
||||
const unsigned int w
|
||||
) {
|
||||
int tid = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
if (tid >= w) {
|
||||
@@ -62,11 +95,19 @@ __global__ void Kernels::vec_vec_mul(
|
||||
d_output[tid] = d_vector1[tid] * d_vector2[tid];
|
||||
}
|
||||
|
||||
__global__ void Kernels::vec_scalar_sub(
|
||||
template __global__ void Kernels::vec_scalar_sub<float>(
|
||||
const float* __restrict__ d_src,
|
||||
float* __restrict__ d_out,
|
||||
const float* __restrict__ d_scalar,
|
||||
const unsigned int len
|
||||
);
|
||||
|
||||
template <typename T>
|
||||
__global__ void Kernels::vec_scalar_sub(
|
||||
const T* __restrict__ d_src,
|
||||
T* __restrict__ d_out,
|
||||
const T* __restrict__ d_scalar,
|
||||
const unsigned int len
|
||||
) {
|
||||
int tid = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
if (tid >= len) {
|
||||
@@ -75,11 +116,19 @@ __global__ void Kernels::vec_scalar_sub(
|
||||
d_out[tid] = d_src[tid] - *d_scalar;
|
||||
}
|
||||
|
||||
__global__ void Kernels::vec_scalar_add(
|
||||
template __global__ void Kernels::vec_scalar_add<float>(
|
||||
const float* __restrict__ d_src,
|
||||
float* __restrict__ d_out,
|
||||
const float* __restrict__ d_scalar,
|
||||
const unsigned int len
|
||||
);
|
||||
|
||||
template <typename T>
|
||||
__global__ void Kernels::vec_scalar_add(
|
||||
const T* __restrict__ d_src,
|
||||
T* __restrict__ d_out,
|
||||
const T* __restrict__ d_scalar,
|
||||
const unsigned int len
|
||||
) {
|
||||
int tid = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
if (tid >= len) {
|
||||
@@ -88,11 +137,19 @@ __global__ void Kernels::vec_scalar_add(
|
||||
d_out[tid] = d_src[tid] + *d_scalar;
|
||||
}
|
||||
|
||||
__global__ void Kernels::vec_scalar_div(
|
||||
template __global__ void Kernels::vec_scalar_div<float>(
|
||||
const float* __restrict__ d_src,
|
||||
float* __restrict__ d_out,
|
||||
const float* __restrict__ d_scalar,
|
||||
const unsigned int len
|
||||
);
|
||||
|
||||
template <typename T>
|
||||
__global__ void Kernels::vec_scalar_div(
|
||||
const T* __restrict__ d_src,
|
||||
T* __restrict__ d_out,
|
||||
const T* __restrict__ d_scalar,
|
||||
const unsigned int len
|
||||
) {
|
||||
int tid = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
if (tid >= len) {
|
||||
@@ -101,11 +158,19 @@ __global__ void Kernels::vec_scalar_div(
|
||||
d_out[tid] = d_src[tid] / *d_scalar;
|
||||
}
|
||||
|
||||
__global__ void Kernels::vec_scalar_mul(
|
||||
template __global__ void Kernels::vec_scalar_mul<float>(
|
||||
const float* __restrict__ d_src,
|
||||
float* __restrict__ d_out,
|
||||
const float* __restrict__ d_scalar,
|
||||
const unsigned int len
|
||||
);
|
||||
|
||||
template <typename T>
|
||||
__global__ void Kernels::vec_scalar_mul(
|
||||
const T* __restrict__ d_src,
|
||||
T* __restrict__ d_out,
|
||||
const T* __restrict__ d_scalar,
|
||||
const unsigned int len
|
||||
) {
|
||||
int tid = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
if (tid >= len) {
|
||||
@@ -114,64 +179,98 @@ __global__ void Kernels::vec_scalar_mul(
|
||||
d_out[tid] = d_src[tid] * *d_scalar;
|
||||
}
|
||||
|
||||
__global__ void Kernels::vec_exp(
|
||||
template __global__ void Kernels::vec_exp<float>(
|
||||
const float* __restrict__ src,
|
||||
float* __restrict__ dst,
|
||||
const unsigned int len
|
||||
);
|
||||
|
||||
template <typename T>
|
||||
__global__ void Kernels::vec_exp(
|
||||
const T* __restrict__ src,
|
||||
T* __restrict__ dst,
|
||||
const unsigned int len
|
||||
) {
|
||||
int stride = gridDim.x * blockDim.x;
|
||||
int tid = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
|
||||
for (int i = tid; i < len; i += stride) {
|
||||
// TODO: separate implementation for __half
|
||||
dst[i] = expf(src[i]);
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void Kernels::vec_sqrt(
|
||||
template __global__ void Kernels::vec_sqrt<float>(
|
||||
const float* __restrict__ src,
|
||||
float* __restrict__ dst,
|
||||
const unsigned int len
|
||||
);
|
||||
|
||||
template <typename T>
|
||||
__global__ void Kernels::vec_sqrt(
|
||||
const T* __restrict__ src,
|
||||
T* __restrict__ dst,
|
||||
const unsigned int len
|
||||
) {
|
||||
int stride = gridDim.x * blockDim.x;
|
||||
int tid = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
int tid = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
|
||||
for (int i = tid; i < len; i += stride) {
|
||||
// TODO: separate implementation for __half
|
||||
dst[i] = sqrtf(src[i]);
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void Kernels::vec_scale(
|
||||
template __global__ void Kernels::vec_scale<float>(
|
||||
const float* __restrict__ src,
|
||||
float* __restrict__ dst,
|
||||
const float* __restrict__ scale,
|
||||
const float* epsilon,
|
||||
const unsigned int len
|
||||
);
|
||||
|
||||
template <typename T>
|
||||
__global__ void Kernels::vec_scale(
|
||||
const T* __restrict__ src,
|
||||
T* __restrict__ dst,
|
||||
const T* __restrict__ scale,
|
||||
const T* epsilon,
|
||||
const unsigned int len
|
||||
) {
|
||||
int idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
if (idx < len) {
|
||||
// TODO: separate implementation for __half
|
||||
float inv_std = rsqrtf(*scale + *epsilon);
|
||||
dst[idx] = src[idx] * inv_std;
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void Kernels::max_reduce(
|
||||
template __global__ void Kernels::max_reduce<float>(
|
||||
const float* __restrict__ d_vector,
|
||||
float* __restrict__ d_output,
|
||||
const unsigned int len
|
||||
);
|
||||
|
||||
template <typename T>
|
||||
__global__ void Kernels::max_reduce(
|
||||
const T* __restrict__ d_vector,
|
||||
T* __restrict__ d_output,
|
||||
const unsigned int len
|
||||
) {
|
||||
__shared__ float shared_max[BLOCK_SIZE];
|
||||
__shared__ T shared_max[BLOCK_SIZE];
|
||||
int i = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
|
||||
if (i < len) {
|
||||
shared_max[threadIdx.x] = d_vector[i];
|
||||
} else {
|
||||
shared_max[threadIdx.x] = -INFINITY;
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
for (int s = blockDim.x / 2; s > 0; s >>= 1) {
|
||||
if (threadIdx.x < s) {
|
||||
// TODO: separate implementation for __half
|
||||
shared_max[threadIdx.x] = fmaxf(shared_max[threadIdx.x], shared_max[threadIdx.x + s]);
|
||||
}
|
||||
__syncthreads();
|
||||
@@ -182,18 +281,25 @@ __global__ void Kernels::max_reduce(
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void Kernels::sum_reduce(
|
||||
template __global__ void Kernels::sum_reduce<float>(
|
||||
const float* __restrict__ d_vector,
|
||||
float* __restrict__ d_output,
|
||||
const unsigned int len
|
||||
);
|
||||
|
||||
template <typename T>
|
||||
__global__ void Kernels::sum_reduce(
|
||||
const T* __restrict__ d_vector,
|
||||
T* __restrict__ d_output,
|
||||
const unsigned int len
|
||||
) {
|
||||
__shared__ float partial_sum[BLOCK_SIZE];
|
||||
__shared__ T partial_sum[BLOCK_SIZE];
|
||||
int i = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
|
||||
if (i < len) {
|
||||
partial_sum[threadIdx.x] = d_vector[i];
|
||||
} else {
|
||||
partial_sum[threadIdx.x] = 0.0f;
|
||||
partial_sum[threadIdx.x] = static_cast<T>(0);
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
@@ -208,4 +314,4 @@ __global__ void Kernels::sum_reduce(
|
||||
if (threadIdx.x == 0) {
|
||||
d_output[blockIdx.x] = partial_sum[0];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
104
src/backends/cuda/kernels/pool.cu
Normal file
104
src/backends/cuda/kernels/pool.cu
Normal file
@@ -0,0 +1,104 @@
|
||||
#include "layer.hpp"
|
||||
#include "backend/cuda/kernels/pool.cuh"
|
||||
|
||||
using namespace CUDANet;
|
||||
|
||||
template __global__ void Kernels::max_pool<float>(
|
||||
const float* __restrict__ d_input,
|
||||
float* __restrict__ d_output,
|
||||
const Shape input_shape,
|
||||
const Shape output_shape,
|
||||
const Shape pool_shape,
|
||||
const Shape stride_shape,
|
||||
const Shape padding_shape
|
||||
);
|
||||
|
||||
template <typename T>
|
||||
__global__ void Kernels::max_pool(
|
||||
const T* __restrict__ d_input,
|
||||
T* __restrict__ d_output,
|
||||
const Shape input_shape,
|
||||
const Shape output_shape,
|
||||
const Shape pool_shape,
|
||||
const Shape stride_shape,
|
||||
const Shape padding_shape
|
||||
) {
|
||||
int j = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
int i = blockDim.y * blockIdx.y + threadIdx.y;
|
||||
int c = blockDim.z * blockIdx.z + threadIdx.z;
|
||||
|
||||
if (i >= output_shape[0] || j >= output_shape[1] || c >= output_shape[2]) {
|
||||
return;
|
||||
}
|
||||
|
||||
T max = static_cast<T>(0);
|
||||
|
||||
for (int k = 0; k < pool_shape[0]; k++) {
|
||||
for (int l = 0; l < pool_shape[1]; l++) {
|
||||
int inputRow = i * stride_shape[0] + k - padding_shape[0];
|
||||
int inputCol = j * stride_shape[1] + l - padding_shape[1];
|
||||
|
||||
if (inputRow >= 0 && inputRow < input_shape[0] && inputCol >= 0 &&
|
||||
inputCol < input_shape[1]) {
|
||||
int inputIndex = c * input_shape[0] * input_shape[1] +
|
||||
inputRow * input_shape[1] + inputCol;
|
||||
if (d_input[inputIndex] > max) {
|
||||
max = d_input[inputIndex];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
d_output
|
||||
[c * output_shape[0] * output_shape[1] + i * output_shape[1] + j] =
|
||||
max;
|
||||
}
|
||||
|
||||
template __global__ void Kernels::avg_pool<float>(
|
||||
const float* __restrict__ d_input,
|
||||
float* __restrict__ d_output,
|
||||
const Shape input_shape,
|
||||
const Shape output_shape,
|
||||
const Shape pool_shape,
|
||||
const Shape stride_shape,
|
||||
const Shape padding_shape
|
||||
);
|
||||
|
||||
template <typename T>
|
||||
__global__ void Kernels::avg_pool(
|
||||
const T* __restrict__ d_input,
|
||||
T* __restrict__ d_output,
|
||||
const Shape input_shape,
|
||||
const Shape output_shape,
|
||||
const Shape pool_shape,
|
||||
const Shape stride_shape,
|
||||
const Shape padding_shape
|
||||
) {
|
||||
int j = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
int i = blockDim.y * blockIdx.y + threadIdx.y;
|
||||
int c = blockDim.z * blockIdx.z + threadIdx.z;
|
||||
|
||||
if (i >= output_shape[0] || j >= output_shape[1] || c >= output_shape[2]) {
|
||||
return;
|
||||
}
|
||||
|
||||
T sum = static_cast<T>(0);
|
||||
|
||||
for (int k = 0; k < pool_shape[0]; k++) {
|
||||
for (int l = 0; l < pool_shape[1]; l++) {
|
||||
int inputRow = i * stride_shape[0] + k - padding_shape[0];
|
||||
int inputCol = j * stride_shape[1] + l - padding_shape[1];
|
||||
|
||||
if (inputRow >= 0 && inputRow < input_shape[0] && inputCol >= 0 &&
|
||||
inputCol < input_shape[1]) {
|
||||
int inputIndex = c * input_shape[0] * input_shape[1] +
|
||||
inputRow * input_shape[1] + inputCol;
|
||||
sum += d_input[inputIndex];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
d_output
|
||||
[c * output_shape[0] * output_shape[1] + i * output_shape[1] + j] =
|
||||
sum / (pool_shape[0] * pool_shape[1]);
|
||||
}
|
||||
@@ -1,85 +0,0 @@
|
||||
#include "cuda_helper.cuh"
|
||||
#include "layer.hpp"
|
||||
#include "pooling.cuh"
|
||||
|
||||
using namespace CUDANet;
|
||||
|
||||
__global__ void Kernels::max_pooling(
|
||||
const float* __restrict__ d_input,
|
||||
float* __restrict__ d_output,
|
||||
const shape2d inputSize,
|
||||
const shape2d outputSize,
|
||||
const int nChannels,
|
||||
const shape2d poolingSize,
|
||||
const shape2d stride,
|
||||
const shape2d padding
|
||||
) {
|
||||
int j = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
int i = blockDim.y * blockIdx.y + threadIdx.y;
|
||||
int c = blockDim.z * blockIdx.z + threadIdx.z;
|
||||
|
||||
if (i >= outputSize.first || j >= outputSize.second || c >= nChannels) {
|
||||
return;
|
||||
}
|
||||
|
||||
float max = 0.0f;
|
||||
|
||||
for (int k = 0; k < poolingSize.first; k++) {
|
||||
for (int l = 0; l < poolingSize.second; l++) {
|
||||
int inputRow = i * stride.first + k - padding.first;
|
||||
int inputCol = j * stride.second + l - padding.second;
|
||||
|
||||
if (inputRow >= 0 && inputRow < inputSize.first && inputCol >= 0 &&
|
||||
inputCol < inputSize.second) {
|
||||
int inputIndex = c * inputSize.first * inputSize.second +
|
||||
inputRow * inputSize.second + inputCol;
|
||||
if (d_input[inputIndex] > max) {
|
||||
max = d_input[inputIndex];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
d_output
|
||||
[c * outputSize.first * outputSize.second + i * outputSize.second + j] =
|
||||
max;
|
||||
}
|
||||
|
||||
__global__ void Kernels::avg_pooling(
|
||||
const float* __restrict__ d_input,
|
||||
float* __restrict__ d_output,
|
||||
const shape2d inputSize,
|
||||
const shape2d outputSize,
|
||||
const int nChannels,
|
||||
const shape2d poolingSize,
|
||||
const shape2d stride,
|
||||
const shape2d padding
|
||||
) {
|
||||
int j = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
int i = blockDim.y * blockIdx.y + threadIdx.y;
|
||||
int c = blockDim.z * blockIdx.z + threadIdx.z;
|
||||
|
||||
if (i >= outputSize.first || j >= outputSize.second || c >= nChannels) {
|
||||
return;
|
||||
}
|
||||
|
||||
float sum = 0.0f;
|
||||
|
||||
for (int k = 0; k < poolingSize.first; k++) {
|
||||
for (int l = 0; l < poolingSize.second; l++) {
|
||||
int inputRow = i * stride.first + k - padding.first;
|
||||
int inputCol = j * stride.second + l - padding.second;
|
||||
|
||||
if (inputRow >= 0 && inputRow < inputSize.first && inputCol >= 0 &&
|
||||
inputCol < inputSize.second) {
|
||||
int inputIndex = c * inputSize.first * inputSize.second +
|
||||
inputRow * inputSize.second + inputCol;
|
||||
sum += d_input[inputIndex];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
d_output
|
||||
[c * outputSize.first * outputSize.second + i * outputSize.second + j] =
|
||||
sum / (poolingSize.first * poolingSize.second);
|
||||
}
|
||||
517
src/backends/cuda/layer_ops.cu
Normal file
517
src/backends/cuda/layer_ops.cu
Normal file
@@ -0,0 +1,517 @@
|
||||
#include "backend/cuda/cuda.cuh"
|
||||
#include "backend/cuda/kernels/activation_functions.cuh"
|
||||
#include "backend/cuda/kernels/convolution.cuh"
|
||||
#include "backend/cuda/kernels/matmul.cuh"
|
||||
#include "backend/cuda/kernels/pool.cuh"
|
||||
|
||||
using namespace CUDANet::Backends;
|
||||
|
||||
void CUDA::relu(Tensor& tensor) {
|
||||
switch (tensor.get_dtype()) {
|
||||
case DType::FLOAT32:
|
||||
relu_impl<float>(tensor);
|
||||
break;
|
||||
|
||||
default:
|
||||
throw std::runtime_error("Unsupported dtype");
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
template void CUDA::relu_impl<float>(Tensor& tensor);
|
||||
|
||||
template <typename T>
|
||||
void CUDA::relu_impl(Tensor& tensor) {
|
||||
int gridSize = (tensor.numel() + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
Kernels::relu<<<gridSize, BLOCK_SIZE>>>(
|
||||
static_cast<T*>(tensor.device_ptr()), static_cast<T*>(tensor.device_ptr()), tensor.numel()
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
}
|
||||
|
||||
void CUDA::sigmoid(CUDANet::Tensor& tensor) {
|
||||
switch (tensor.get_dtype()) {
|
||||
case DType::FLOAT32:
|
||||
sigmoid_impl<float>(tensor);
|
||||
break;
|
||||
|
||||
default:
|
||||
throw std::runtime_error("Unsupported dtype");
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
template void CUDA::sigmoid_impl<float>(Tensor& tensor);
|
||||
|
||||
template <typename T>
|
||||
void CUDA::sigmoid_impl(CUDANet::Tensor& tensor) {
|
||||
int gridSize = (tensor.numel() + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
Kernels::sigmoid<<<gridSize, BLOCK_SIZE>>>(
|
||||
static_cast<T*>(tensor.device_ptr()), static_cast<T*>(tensor.device_ptr()), tensor.numel()
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
}
|
||||
|
||||
void CUDA::softmax(Tensor& tensor, Tensor& temp_max, Tensor& temp_sum) {
|
||||
switch (tensor.get_dtype()) {
|
||||
case DType::FLOAT32:
|
||||
softmax_impl<float>(tensor, temp_max, temp_sum);
|
||||
break;
|
||||
|
||||
default:
|
||||
throw std::runtime_error("Unsupported dtype");
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
template void
|
||||
CUDA::softmax_impl<float>(Tensor& tensor, Tensor& temp_max, Tensor& temp_sum);
|
||||
|
||||
template <typename T>
|
||||
void CUDA::softmax_impl(Tensor& tensor, Tensor& temp_max, Tensor& temp_sum) {
|
||||
int gridSize = (tensor.numel() + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
|
||||
// Find max value
|
||||
max(tensor, temp_max);
|
||||
|
||||
// Subtract max value to improve numerical stability
|
||||
Kernels::vec_scalar_sub<<<gridSize, BLOCK_SIZE>>>(
|
||||
static_cast<T*>(tensor.device_ptr()), static_cast<T*>(tensor.device_ptr()), static_cast<T*>(temp_max.device_ptr()), tensor.numel()
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
// Compute exponentials
|
||||
Kernels::vec_exp<<<gridSize, BLOCK_SIZE>>>(
|
||||
static_cast<T*>(tensor.device_ptr()), static_cast<T*>(tensor.device_ptr()), tensor.numel()
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
// Find sum
|
||||
sum(tensor, temp_sum);
|
||||
|
||||
Kernels::vec_scalar_div<<<gridSize, BLOCK_SIZE>>>(
|
||||
static_cast<T*>(tensor.device_ptr()), static_cast<T*>(tensor.device_ptr()), static_cast<T*>(temp_sum.device_ptr()), tensor.numel()
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
}
|
||||
|
||||
CUDANet::Tensor& CUDA::dense(
|
||||
const CUDANet::Tensor& weights,
|
||||
const CUDANet::Tensor& biases,
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
const size_t input_size,
|
||||
const size_t output_size
|
||||
) {
|
||||
switch (input.get_dtype()) {
|
||||
case DType::FLOAT32:
|
||||
return dense_impl<float>(
|
||||
weights, biases, input, output, input_size, output_size
|
||||
);
|
||||
break;
|
||||
|
||||
default:
|
||||
throw std::runtime_error("Unsupported dtype");
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
template CUDANet::Tensor& CUDA::dense_impl<float>(
|
||||
const CUDANet::Tensor& weights,
|
||||
const CUDANet::Tensor& biases,
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
const size_t input_size,
|
||||
const size_t output_size
|
||||
);
|
||||
|
||||
template <typename T>
|
||||
CUDANet::Tensor& CUDA::dense_impl(
|
||||
const CUDANet::Tensor& weights,
|
||||
const CUDANet::Tensor& biases,
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
const size_t input_size,
|
||||
const size_t output_size
|
||||
) {
|
||||
auto forwardGridSize =
|
||||
(std::max(input_size, output_size) + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
auto biasGridSize = (output_size + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
|
||||
Kernels::mat_vec_mul<<<forwardGridSize, BLOCK_SIZE>>>(
|
||||
static_cast<const T*>(weights.device_ptr()), static_cast<const T*>(input.device_ptr()), static_cast<T*>(output.device_ptr()), input_size,
|
||||
output_size
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
Kernels::vec_vec_add<<<biasGridSize, BLOCK_SIZE>>>(
|
||||
static_cast<const T*>(biases.device_ptr()), static_cast<T*>(output.device_ptr()), static_cast<T*>(output.device_ptr()), output_size
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
|
||||
return output;
|
||||
}
|
||||
|
||||
CUDANet::Tensor& CUDA::conv2d(
|
||||
const CUDANet::Tensor& weights,
|
||||
const CUDANet::Tensor& biases,
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
const CUDANet::Shape in_shape,
|
||||
const CUDANet::Shape padding_shape,
|
||||
const CUDANet::Shape kernel_shape,
|
||||
const CUDANet::Shape stride_shape,
|
||||
const CUDANet::Shape out_shape
|
||||
) {
|
||||
switch (input.get_dtype()) {
|
||||
case DType::FLOAT32:
|
||||
return conv2d_impl<float>(
|
||||
weights, biases, input, output, in_shape, padding_shape,
|
||||
kernel_shape, stride_shape, out_shape
|
||||
);
|
||||
break;
|
||||
|
||||
default:
|
||||
throw std::runtime_error("Unsupported dtype");
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
template CUDANet::Tensor& CUDA::conv2d_impl<float>(
|
||||
const CUDANet::Tensor& weights,
|
||||
const CUDANet::Tensor& biases,
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
const CUDANet::Shape in_shape,
|
||||
const CUDANet::Shape padding_shape,
|
||||
const CUDANet::Shape kernel_shape,
|
||||
const CUDANet::Shape stride_shape,
|
||||
const CUDANet::Shape out_shape
|
||||
);
|
||||
|
||||
template <typename T>
|
||||
CUDANet::Tensor& CUDA::conv2d_impl(
|
||||
const CUDANet::Tensor& weights,
|
||||
const CUDANet::Tensor& biases,
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
const CUDANet::Shape in_shape,
|
||||
const CUDANet::Shape padding_shape,
|
||||
const CUDANet::Shape kernel_shape,
|
||||
const CUDANet::Shape stride_shape,
|
||||
const CUDANet::Shape out_shape
|
||||
) {
|
||||
dim3 block(8, 8, 8);
|
||||
dim3 grid(
|
||||
(out_shape[0] + block.x - 1) / block.x,
|
||||
(out_shape[1] + block.y - 1) / block.y,
|
||||
(out_shape[2] + block.z - 1) / block.z
|
||||
);
|
||||
|
||||
Kernels::convolution<<<grid, block>>>(
|
||||
static_cast<const T*>(input.device_ptr()), static_cast<const T*>(weights.device_ptr()), static_cast<const T*>(biases.device_ptr()), static_cast<T*>(output.device_ptr()),
|
||||
in_shape, padding_shape, kernel_shape, stride_shape, out_shape
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
|
||||
return output;
|
||||
}
|
||||
|
||||
CUDANet::Tensor& CUDA::max_pool2d(
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
CUDANet::Shape input_shape,
|
||||
CUDANet::Shape pool_shape,
|
||||
CUDANet::Shape stride_shape,
|
||||
CUDANet::Shape padding_shape,
|
||||
CUDANet::Shape output_shape
|
||||
) {
|
||||
switch (input.get_dtype()) {
|
||||
case DType::FLOAT32:
|
||||
return max_pool2d_impl<float>(
|
||||
input, output, input_shape, pool_shape, stride_shape,
|
||||
padding_shape, output_shape
|
||||
);
|
||||
break;
|
||||
|
||||
default:
|
||||
throw std::runtime_error("Unsupported dtype");
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
template CUDANet::Tensor& CUDA::max_pool2d_impl<float>(
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
CUDANet::Shape input_shape,
|
||||
CUDANet::Shape pool_shape,
|
||||
CUDANet::Shape stride_shape,
|
||||
CUDANet::Shape padding_shape,
|
||||
CUDANet::Shape output_shape
|
||||
);
|
||||
|
||||
template <typename T>
|
||||
CUDANet::Tensor& CUDA::max_pool2d_impl(
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
CUDANet::Shape input_shape,
|
||||
CUDANet::Shape pool_shape,
|
||||
CUDANet::Shape stride_shape,
|
||||
CUDANet::Shape padding_shape,
|
||||
CUDANet::Shape output_shape
|
||||
) {
|
||||
dim3 block(8, 8, 8);
|
||||
dim3 grid(
|
||||
(output_shape[0] + block.x - 1) / block.x,
|
||||
(output_shape[1] + block.y - 1) / block.y,
|
||||
(output_shape[2] + block.z - 1) / block.z
|
||||
);
|
||||
|
||||
Kernels::max_pool<<<grid, block>>>(
|
||||
static_cast<const T*>(input.device_ptr()), static_cast<T*>(output.device_ptr()), input_shape, output_shape,
|
||||
pool_shape, stride_shape, padding_shape
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
|
||||
return output;
|
||||
}
|
||||
|
||||
CUDANet::Tensor& CUDA::avg_pool2d(
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
CUDANet::Shape input_shape,
|
||||
CUDANet::Shape pool_shape,
|
||||
CUDANet::Shape stride_shape,
|
||||
CUDANet::Shape padding_shape,
|
||||
CUDANet::Shape output_shape
|
||||
) {
|
||||
switch (input.get_dtype()) {
|
||||
case DType::FLOAT32:
|
||||
return avg_pool2d_impl<float>(
|
||||
input, output, input_shape, pool_shape, stride_shape,
|
||||
padding_shape, output_shape
|
||||
);
|
||||
break;
|
||||
|
||||
default:
|
||||
throw std::runtime_error("Unsupported dtype");
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
template CUDANet::Tensor& CUDA::avg_pool2d_impl<float>(
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
CUDANet::Shape input_shape,
|
||||
CUDANet::Shape pool_shape,
|
||||
CUDANet::Shape stride_shape,
|
||||
CUDANet::Shape padding_shape,
|
||||
CUDANet::Shape output_shape
|
||||
);
|
||||
|
||||
template <typename T>
|
||||
CUDANet::Tensor& CUDA::avg_pool2d_impl(
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
CUDANet::Shape input_shape,
|
||||
CUDANet::Shape pool_shape,
|
||||
CUDANet::Shape stride_shape,
|
||||
CUDANet::Shape padding_shape,
|
||||
CUDANet::Shape output_shape
|
||||
) {
|
||||
dim3 block(8, 8, 8);
|
||||
dim3 grid(
|
||||
(output_shape[0] + block.x - 1) / block.x,
|
||||
(output_shape[1] + block.y - 1) / block.y,
|
||||
(output_shape[2] + block.z - 1) / block.z
|
||||
);
|
||||
|
||||
Kernels::avg_pool<<<grid, block>>>(
|
||||
static_cast<const T*>(input.device_ptr()), static_cast<T*>(output.device_ptr()), input_shape, output_shape,
|
||||
pool_shape, stride_shape, padding_shape
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
|
||||
return output;
|
||||
}
|
||||
|
||||
CUDANet::Tensor& CUDA::batch_norm(
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
CUDANet::Shape input_shape,
|
||||
CUDANet::Tensor& weights,
|
||||
CUDANet::Tensor& biases,
|
||||
CUDANet::Tensor& running_mean,
|
||||
CUDANet::Tensor& running_var,
|
||||
CUDANet::Tensor& epsilon
|
||||
) {
|
||||
switch (input.get_dtype()) {
|
||||
case DType::FLOAT32:
|
||||
return batch_norm_impl<float>(
|
||||
input, output, input_shape, weights, biases, running_mean,
|
||||
running_var, epsilon
|
||||
);
|
||||
break;
|
||||
|
||||
default:
|
||||
throw std::runtime_error("Unsupported dtype");
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
template CUDANet::Tensor& CUDA::batch_norm_impl<float>(
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
CUDANet::Shape input_shape,
|
||||
CUDANet::Tensor& weights,
|
||||
CUDANet::Tensor& biases,
|
||||
CUDANet::Tensor& running_mean,
|
||||
CUDANet::Tensor& running_var,
|
||||
CUDANet::Tensor& epsilon
|
||||
);
|
||||
|
||||
template <typename T>
|
||||
CUDANet::Tensor& CUDA::batch_norm_impl(
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
CUDANet::Shape input_shape,
|
||||
CUDANet::Tensor& weights,
|
||||
CUDANet::Tensor& biases,
|
||||
CUDANet::Tensor& running_mean,
|
||||
CUDANet::Tensor& running_var,
|
||||
CUDANet::Tensor& epsilon
|
||||
) {
|
||||
auto gridSize =
|
||||
(input_shape[0] * input_shape[1] + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
|
||||
for (int i = 0; i < input_shape[2]; i++) {
|
||||
// Subtract mean from input
|
||||
Kernels::vec_scalar_sub<<<gridSize, BLOCK_SIZE>>>(
|
||||
static_cast<const T*>(input.device_ptr()) + i * input_shape[0] * input_shape[1],
|
||||
static_cast<T*>(output.device_ptr()) + i * input_shape[0] * input_shape[1],
|
||||
&static_cast<T*>(running_mean.device_ptr())[i], input_shape[0] * input_shape[1]
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
// Divide by sqrt(running_var + epsilon)
|
||||
Kernels::vec_scale<<<gridSize, BLOCK_SIZE>>>(
|
||||
static_cast<T*>(output.device_ptr()) + i * input_shape[0] * input_shape[1],
|
||||
static_cast<T*>(output.device_ptr()) + i * input_shape[0] * input_shape[1],
|
||||
&static_cast<T*>(running_var.device_ptr())[i], static_cast<T*>(epsilon.device_ptr()),
|
||||
input_shape[0] * input_shape[1]
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
// Multiply by weights
|
||||
Kernels::vec_scalar_mul<<<gridSize, BLOCK_SIZE>>>(
|
||||
static_cast<T*>(output.device_ptr()) + i * input_shape[0] * input_shape[1],
|
||||
static_cast<T*>(output.device_ptr()) + i * input_shape[0] * input_shape[1],
|
||||
&static_cast<T*>(weights.device_ptr())[i], input_shape[0] * input_shape[1]
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
// Add biases
|
||||
Kernels::vec_scalar_add<<<gridSize, BLOCK_SIZE>>>(
|
||||
static_cast<T*>(output.device_ptr()) + i * input_shape[0] * input_shape[1],
|
||||
static_cast<T*>(output.device_ptr()) + i * input_shape[0] * input_shape[1],
|
||||
&static_cast<T*>(biases.device_ptr())[i], input_shape[0] * input_shape[1]
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
}
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
return output;
|
||||
}
|
||||
|
||||
CUDANet::Tensor& CUDA::concat(
|
||||
CUDANet::Tensor& input_a,
|
||||
CUDANet::Tensor& input_b,
|
||||
CUDANet::Tensor& output
|
||||
) {
|
||||
switch (input_a.get_dtype()) {
|
||||
case DType::FLOAT32:
|
||||
return concat_impl<float>(
|
||||
input_a, input_b, output
|
||||
);
|
||||
break;
|
||||
|
||||
default:
|
||||
throw std::runtime_error("Unsupported dtype");
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
template CUDANet::Tensor& CUDA::concat_impl<float>(
|
||||
CUDANet::Tensor& input_a,
|
||||
CUDANet::Tensor& input_b,
|
||||
CUDANet::Tensor& output
|
||||
);
|
||||
|
||||
template <typename T>
|
||||
CUDANet::Tensor& CUDA::concat_impl(
|
||||
CUDANet::Tensor& input_a,
|
||||
CUDANet::Tensor& input_b,
|
||||
CUDANet::Tensor& output
|
||||
) {
|
||||
CUDA_CHECK(cudaMemcpy(
|
||||
static_cast<T*>(output.device_ptr()), static_cast<const T*>(input_a.device_ptr()), input_a.size(),
|
||||
cudaMemcpyDeviceToDevice
|
||||
));
|
||||
|
||||
CUDA_CHECK(cudaMemcpy(
|
||||
static_cast<T*>(output.device_ptr()) + input_a.numel(), static_cast<const T*>(input_b.device_ptr()), input_b.size(),
|
||||
cudaMemcpyDeviceToDevice
|
||||
));
|
||||
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
|
||||
return output;
|
||||
}
|
||||
|
||||
CUDANet::Tensor& CUDA::add(
|
||||
CUDANet::Tensor& input_a,
|
||||
CUDANet::Tensor& input_b,
|
||||
CUDANet::Tensor& output
|
||||
) {
|
||||
switch (input_a.get_dtype()) {
|
||||
case DType::FLOAT32:
|
||||
return add_impl<float>(
|
||||
input_a, input_b, output
|
||||
);
|
||||
break;
|
||||
|
||||
default:
|
||||
throw std::runtime_error("Unsupported dtype");
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
template CUDANet::Tensor& CUDA::add_impl<float>(
|
||||
CUDANet::Tensor& input_a,
|
||||
CUDANet::Tensor& input_b,
|
||||
CUDANet::Tensor& output
|
||||
);
|
||||
|
||||
template <typename T>
|
||||
CUDANet::Tensor& CUDA::add_impl(
|
||||
CUDANet::Tensor& input_a,
|
||||
CUDANet::Tensor& input_b,
|
||||
CUDANet::Tensor& output
|
||||
) {
|
||||
auto gridSize = (input_a.numel() + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
|
||||
Kernels::vec_vec_add<<<gridSize, BLOCK_SIZE>>>(
|
||||
static_cast<const T*>(input_a.device_ptr()), static_cast<const T*>(input_b.device_ptr()), static_cast<T*>(output.device_ptr()), input_a.numel()
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
|
||||
return output;
|
||||
}
|
||||
@@ -1,77 +0,0 @@
|
||||
#include <vector>
|
||||
|
||||
#include "activation.hpp"
|
||||
#include "activation_functions.cuh"
|
||||
#include "cuda_helper.cuh"
|
||||
#include "matmul.cuh"
|
||||
#include "vector.cuh"
|
||||
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
void Activation::initCUDA() {
|
||||
if (activationType == SOFTMAX) {
|
||||
d_softmax_sum = nullptr;
|
||||
CUDA_CHECK(cudaMalloc((void**)&d_softmax_sum, sizeof(float) * length));
|
||||
|
||||
d_max = nullptr;
|
||||
CUDA_CHECK(cudaMalloc((void**)&d_max, sizeof(float) * length));
|
||||
}
|
||||
|
||||
gridSize = (length + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
}
|
||||
|
||||
void Activation::delCUDA() {
|
||||
if (activationType == SOFTMAX) {
|
||||
CUDA_CHECK(cudaFree(d_softmax_sum));
|
||||
CUDA_CHECK(cudaFree(d_max));
|
||||
}
|
||||
}
|
||||
|
||||
void Activation::activateCUDA(float* d_input) {
|
||||
|
||||
// float sum = 0.0f;
|
||||
|
||||
switch (activationType) {
|
||||
case SIGMOID:
|
||||
Kernels::sigmoid<<<gridSize, BLOCK_SIZE>>>(
|
||||
d_input, d_input, length
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
break;
|
||||
|
||||
case RELU:
|
||||
Kernels::relu<<<gridSize, BLOCK_SIZE>>>(d_input, d_input, length);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
break;
|
||||
case SOFTMAX:
|
||||
|
||||
// Find max value
|
||||
Utils::max(d_input, d_max, length);
|
||||
|
||||
// Subtract max value to improve numerical stability
|
||||
Kernels::vec_scalar_sub<<<gridSize, BLOCK_SIZE>>>(
|
||||
d_input, d_input, &d_max[0], length
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
// Compute exponentials
|
||||
Kernels::vec_exp<<<gridSize, BLOCK_SIZE>>>(
|
||||
d_input, d_input, length
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
// Find sum
|
||||
Utils::sum(d_input, d_softmax_sum, length);
|
||||
|
||||
Kernels::vec_scalar_div<<<gridSize, BLOCK_SIZE>>>(
|
||||
d_input, d_input, &d_softmax_sum[0], length
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
break;
|
||||
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
}
|
||||
@@ -1,28 +0,0 @@
|
||||
#include "add.hpp"
|
||||
#include "matmul.cuh"
|
||||
#include "cuda_helper.cuh"
|
||||
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
void Add::initCUDA() {
|
||||
d_output = nullptr;
|
||||
CUDA_CHECK(cudaMalloc((void**)&d_output, sizeof(float) * inputSize));
|
||||
|
||||
gridSize = (inputSize + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
}
|
||||
|
||||
void Add::delCUDA() {
|
||||
cudaFree(d_output);
|
||||
}
|
||||
|
||||
float* Add::forwardCUDA(const float* d_inputA, const float* d_inputB) {
|
||||
|
||||
Kernels::vec_vec_add<<<gridSize, BLOCK_SIZE>>>(
|
||||
d_inputA, d_inputB, d_output, inputSize
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
|
||||
return d_output;
|
||||
|
||||
}
|
||||
@@ -1,45 +0,0 @@
|
||||
#include "avg_pooling.hpp"
|
||||
#include "cuda_helper.cuh"
|
||||
#include "pooling.cuh"
|
||||
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
void AvgPooling2d::initCUDA() {
|
||||
d_output = nullptr;
|
||||
CUDA_CHECK(cudaMalloc(
|
||||
(void**)&d_output,
|
||||
sizeof(float) * outputSize.first * outputSize.second * nChannels
|
||||
));
|
||||
}
|
||||
|
||||
void AvgPooling2d::delCUDA() {
|
||||
cudaFree(d_output);
|
||||
}
|
||||
|
||||
float* AvgPooling2d::forwardCUDA(const float* d_input) {
|
||||
dim3 block(8, 8, 8);
|
||||
dim3 grid(
|
||||
(outputSize.first + block.x - 1) / block.x,
|
||||
(outputSize.second + block.y - 1) / block.y,
|
||||
(nChannels + block.z - 1) / block.z
|
||||
);
|
||||
|
||||
Kernels::avg_pooling<<<grid, block>>>(
|
||||
d_input, d_output, inputSize, outputSize, nChannels, poolingSize,
|
||||
stride, padding
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
activation->activate(d_output);
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
|
||||
return d_output;
|
||||
}
|
||||
|
||||
void AdaptiveAvgPooling2d::initCUDA() {
|
||||
cudaFree(d_output);
|
||||
cudaMalloc(
|
||||
(void**)&d_output,
|
||||
sizeof(float) * outputSize.first * outputSize.second * nChannels
|
||||
);
|
||||
}
|
||||
@@ -1,120 +0,0 @@
|
||||
#include <vector>
|
||||
|
||||
#include "activation.hpp"
|
||||
#include "batch_norm.hpp"
|
||||
#include "cuda_helper.cuh"
|
||||
#include "layer.hpp"
|
||||
#include "matmul.cuh"
|
||||
#include "vector.cuh"
|
||||
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
void BatchNorm2d::initCUDA() {
|
||||
d_output = nullptr;
|
||||
CUDA_CHECK(cudaMalloc(
|
||||
(void **)&d_output,
|
||||
sizeof(float) * inputSize.first * inputSize.second * inputChannels
|
||||
));
|
||||
|
||||
d_running_mean = nullptr;
|
||||
CUDA_CHECK(
|
||||
cudaMalloc((void **)&d_running_mean, sizeof(float) * inputChannels)
|
||||
);
|
||||
|
||||
d_running_var = nullptr;
|
||||
CUDA_CHECK(
|
||||
cudaMalloc((void **)&d_running_var, sizeof(float) * inputChannels)
|
||||
);
|
||||
|
||||
d_weights = nullptr;
|
||||
CUDA_CHECK(cudaMalloc((void **)&d_weights, sizeof(float) * inputChannels));
|
||||
|
||||
d_biases = nullptr;
|
||||
CUDA_CHECK(cudaMalloc((void **)&d_biases, sizeof(float) * inputChannels));
|
||||
|
||||
d_length = nullptr;
|
||||
float length = (float)inputSize.first * inputSize.second;
|
||||
CUDA_CHECK(cudaMalloc((void **)&d_length, sizeof(float)));
|
||||
CUDA_CHECK(
|
||||
cudaMemcpy(d_length, &length, sizeof(float), cudaMemcpyHostToDevice)
|
||||
);
|
||||
|
||||
d_epsilon = nullptr;
|
||||
CUDA_CHECK(cudaMalloc((void **)&d_epsilon, sizeof(float)));
|
||||
CUDA_CHECK(
|
||||
cudaMemcpy(d_epsilon, &epsilon, sizeof(float), cudaMemcpyHostToDevice)
|
||||
);
|
||||
|
||||
gridSize =
|
||||
(inputSize.first * inputSize.second + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
}
|
||||
|
||||
void BatchNorm2d::delCUDA() {
|
||||
cudaFree(d_output);
|
||||
cudaFree(d_running_mean);
|
||||
cudaFree(d_running_var);
|
||||
cudaFree(d_weights);
|
||||
cudaFree(d_biases);
|
||||
cudaFree(d_length);
|
||||
cudaFree(d_epsilon);
|
||||
}
|
||||
|
||||
void BatchNorm2d::toCuda() {
|
||||
CUDA_CHECK(cudaMemcpy(
|
||||
d_weights, weights.data(), sizeof(float) * inputChannels,
|
||||
cudaMemcpyHostToDevice
|
||||
));
|
||||
CUDA_CHECK(cudaMemcpy(
|
||||
d_biases, biases.data(), sizeof(float) * inputChannels,
|
||||
cudaMemcpyHostToDevice
|
||||
));
|
||||
CUDA_CHECK(cudaMemcpy(
|
||||
d_running_mean, running_mean.data(), sizeof(float) * inputChannels,
|
||||
cudaMemcpyHostToDevice
|
||||
));
|
||||
CUDA_CHECK(cudaMemcpy(
|
||||
d_running_var, running_var.data(), sizeof(float) * inputChannels,
|
||||
cudaMemcpyHostToDevice
|
||||
));
|
||||
}
|
||||
|
||||
float *BatchNorm2d::forwardCUDA(const float *d_input) {
|
||||
// Compute per-channel batch normalization
|
||||
for (int i = 0; i < inputChannels; i++) {
|
||||
// Subtract mean from input
|
||||
Kernels::vec_scalar_sub<<<gridSize, BLOCK_SIZE>>>(
|
||||
d_input + i * inputSize.first * inputSize.second,
|
||||
d_output + i * inputSize.first * inputSize.second,
|
||||
&d_running_mean[i], inputSize.first * inputSize.second
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
// Divide by sqrt(running_var + epsilon)
|
||||
Kernels::vec_scale<<<gridSize, BLOCK_SIZE>>>(
|
||||
d_output + i * inputSize.first * inputSize.second,
|
||||
d_output + i * inputSize.first * inputSize.second,
|
||||
&d_running_var[i], d_epsilon, inputSize.first * inputSize.second
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
// Multiply by weights
|
||||
Kernels::vec_scalar_mul<<<gridSize, BLOCK_SIZE>>>(
|
||||
d_output + i * inputSize.first * inputSize.second,
|
||||
d_output + i * inputSize.first * inputSize.second, &d_weights[i],
|
||||
inputSize.first * inputSize.second
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
// Add biases
|
||||
Kernels::vec_scalar_add<<<gridSize, BLOCK_SIZE>>>(
|
||||
d_output + i * inputSize.first * inputSize.second,
|
||||
d_output + i * inputSize.first * inputSize.second, &d_biases[i],
|
||||
inputSize.first * inputSize.second
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
}
|
||||
|
||||
activation->activate(d_output);
|
||||
|
||||
return d_output;
|
||||
}
|
||||
@@ -1,31 +0,0 @@
|
||||
#include "concat.hpp"
|
||||
#include "cuda_helper.cuh"
|
||||
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
void Concat::initCUDA() {
|
||||
d_output = nullptr;
|
||||
CUDA_CHECK(
|
||||
cudaMalloc((void**)&d_output, sizeof(float) * (inputASize + inputBSize))
|
||||
);
|
||||
}
|
||||
|
||||
void Concat::delCUDA() {
|
||||
cudaFree(d_output);
|
||||
}
|
||||
|
||||
float* Concat::forwardCUDA(const float* d_input_A, const float* d_input_B) {
|
||||
CUDA_CHECK(cudaMemcpy(
|
||||
d_output, d_input_A, sizeof(float) * inputASize,
|
||||
cudaMemcpyDeviceToDevice
|
||||
));
|
||||
|
||||
CUDA_CHECK(cudaMemcpy(
|
||||
d_output + inputASize, d_input_B, sizeof(float) * inputBSize,
|
||||
cudaMemcpyDeviceToDevice
|
||||
));
|
||||
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
|
||||
return d_output;
|
||||
}
|
||||
@@ -1,73 +0,0 @@
|
||||
#include <vector>
|
||||
|
||||
#include "activation.hpp"
|
||||
#include "conv2d.hpp"
|
||||
#include "convolution.cuh"
|
||||
#include "cuda_helper.cuh"
|
||||
#include "layer.hpp"
|
||||
#include "matmul.cuh"
|
||||
#include "vector.cuh"
|
||||
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
void Conv2d::initCUDA() {
|
||||
d_output = nullptr;
|
||||
CUDA_CHECK(cudaMalloc(
|
||||
(void**)&d_output,
|
||||
sizeof(float) * outputSize.first * outputSize.second * numFilters
|
||||
));
|
||||
|
||||
d_weights = nullptr;
|
||||
CUDA_CHECK(cudaMalloc(
|
||||
(void**)&d_weights, sizeof(float) * kernelSize.first *
|
||||
kernelSize.second * inputChannels * numFilters
|
||||
));
|
||||
|
||||
d_biases = nullptr;
|
||||
CUDA_CHECK(cudaMalloc((void**)&d_biases, sizeof(float) * numFilters));
|
||||
}
|
||||
|
||||
void Conv2d::delCUDA() {
|
||||
cudaFree(d_output);
|
||||
cudaFree(d_weights);
|
||||
cudaFree(d_biases);
|
||||
}
|
||||
|
||||
void Conv2d::toCuda() {
|
||||
CUDA_CHECK(cudaMemcpy(
|
||||
d_weights, weights.data(),
|
||||
sizeof(float) * kernelSize.first * kernelSize.second * inputChannels *
|
||||
numFilters,
|
||||
cudaMemcpyHostToDevice
|
||||
));
|
||||
|
||||
CUDA_CHECK(cudaMemcpy(
|
||||
d_biases, biases.data(), sizeof(float) * numFilters,
|
||||
cudaMemcpyHostToDevice
|
||||
));
|
||||
}
|
||||
|
||||
float* Conv2d::forwardCUDA(const float* d_input) {
|
||||
// Convolve
|
||||
dim3 block(8, 8, 8);
|
||||
dim3 grid(
|
||||
(outputSize.first + block.x - 1) / block.x,
|
||||
(outputSize.second + block.y - 1) / block.y,
|
||||
(numFilters + block.z - 1) / block.z
|
||||
);
|
||||
|
||||
CUDANet::Utils::clear(d_output, outputSize.first * outputSize.second * numFilters);
|
||||
|
||||
Kernels::convolution<<<grid, block>>>(
|
||||
d_input, d_weights, d_biases, d_output, inputSize, inputChannels,
|
||||
paddingSize, kernelSize, stride, numFilters, outputSize
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
// Apply activation
|
||||
activation->activate(d_output);
|
||||
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
|
||||
return d_output;
|
||||
}
|
||||
@@ -1,69 +0,0 @@
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
#include <cstdio>
|
||||
#include <cstdlib>
|
||||
#include <functional>
|
||||
#include <iostream>
|
||||
|
||||
#include "vector.cuh"
|
||||
#include "activation.hpp"
|
||||
#include "cuda_helper.cuh"
|
||||
#include "dense.hpp"
|
||||
#include "matmul.cuh"
|
||||
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
void Dense::initCUDA() {
|
||||
d_output = nullptr;
|
||||
|
||||
CUDA_CHECK(cudaMalloc((void**)&d_output, sizeof(float) * outputSize));
|
||||
|
||||
d_weights = nullptr;
|
||||
d_biases = nullptr;
|
||||
|
||||
// Allocate GPU memory for weights and biases
|
||||
CUDA_CHECK(
|
||||
cudaMalloc((void**)&d_weights, sizeof(float) * inputSize * outputSize)
|
||||
);
|
||||
CUDA_CHECK(cudaMalloc((void**)&d_biases, sizeof(float) * outputSize));
|
||||
toCuda();
|
||||
|
||||
// Calculate block and grid sizes
|
||||
forwardGridSize =
|
||||
(std::max(inputSize, outputSize) + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
biasGridSize = (outputSize + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
}
|
||||
|
||||
void Dense::delCUDA() {
|
||||
cudaFree(d_output);
|
||||
cudaFree(d_weights);
|
||||
cudaFree(d_biases);
|
||||
}
|
||||
|
||||
void Dense::toCuda() {
|
||||
CUDA_CHECK(cudaMemcpy(
|
||||
d_weights, weights.data(), sizeof(float) * inputSize * outputSize,
|
||||
cudaMemcpyHostToDevice
|
||||
));
|
||||
CUDA_CHECK(cudaMemcpy(
|
||||
d_biases, biases.data(), sizeof(float) * outputSize,
|
||||
cudaMemcpyHostToDevice
|
||||
));
|
||||
}
|
||||
|
||||
float* Dense::forwardCUDA(const float* d_input) {
|
||||
Kernels::mat_vec_mul<<<forwardGridSize, BLOCK_SIZE>>>(
|
||||
d_weights, d_input, d_output, inputSize, outputSize
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
Kernels::vec_vec_add<<<biasGridSize, BLOCK_SIZE>>>(
|
||||
d_biases, d_output, d_output, outputSize
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
activation->activate(d_output);
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
|
||||
return d_output;
|
||||
}
|
||||
@@ -1,22 +0,0 @@
|
||||
#include "cuda_helper.cuh"
|
||||
#include "input.hpp"
|
||||
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
void Input::initCUDA() {
|
||||
d_output = nullptr;
|
||||
CUDA_CHECK(cudaMalloc((void**)&d_output, sizeof(float) * inputSize));
|
||||
}
|
||||
|
||||
void Input::delCUDA() {
|
||||
cudaFree(d_output);
|
||||
}
|
||||
|
||||
float* Input::forwardCUDA(const float* input) {
|
||||
CUDA_CHECK(cudaMemcpy(
|
||||
d_output, input, sizeof(float) * inputSize, cudaMemcpyHostToDevice
|
||||
));
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
|
||||
return d_output;
|
||||
}
|
||||
@@ -1,38 +0,0 @@
|
||||
#include "cuda_helper.cuh"
|
||||
#include "max_pooling.hpp"
|
||||
#include "pooling.cuh"
|
||||
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
void MaxPooling2d::initCUDA() {
|
||||
d_output = nullptr;
|
||||
CUDA_CHECK(cudaMalloc(
|
||||
(void**)&d_output,
|
||||
sizeof(float) * outputSize.first * outputSize.second * nChannels
|
||||
));
|
||||
}
|
||||
|
||||
void MaxPooling2d::delCUDA() {
|
||||
cudaFree(d_output);
|
||||
}
|
||||
|
||||
|
||||
float* MaxPooling2d::forwardCUDA(const float* d_input) {
|
||||
dim3 block(8, 8, 8);
|
||||
dim3 grid(
|
||||
(outputSize.first + block.x - 1) / block.x,
|
||||
(outputSize.second + block.y - 1) / block.y,
|
||||
(nChannels + block.z - 1) / block.z
|
||||
);
|
||||
|
||||
Kernels::max_pooling<<<grid, block>>>(
|
||||
d_input, d_output, inputSize, outputSize, nChannels, poolingSize,
|
||||
stride, padding
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
activation->activate(d_output);
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
|
||||
return d_output;
|
||||
}
|
||||
@@ -1,14 +0,0 @@
|
||||
#include "output.hpp"
|
||||
|
||||
#include "cuda_helper.cuh"
|
||||
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
float* Output::forwardCUDA(const float* input) {
|
||||
CUDA_CHECK(cudaMemcpy(
|
||||
h_output, input, sizeof(float) * inputSize, cudaMemcpyDeviceToHost
|
||||
));
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
|
||||
return h_output;
|
||||
}
|
||||
146
src/backends/cuda/tensor_ops.cu
Normal file
146
src/backends/cuda/tensor_ops.cu
Normal file
@@ -0,0 +1,146 @@
|
||||
#include <iostream>
|
||||
|
||||
#include "backend.hpp"
|
||||
#include "backend/cuda/cuda.cuh"
|
||||
#include "backend/cuda/kernels/matmul.cuh"
|
||||
|
||||
using namespace CUDANet::Backends;
|
||||
|
||||
void CUDA::print(const CUDANet::Tensor &input) {
|
||||
switch (input.get_dtype()) {
|
||||
case DType::FLOAT32:
|
||||
print_impl<float>(input);
|
||||
break;
|
||||
|
||||
default:
|
||||
throw std::runtime_error("Unsupported dtype");
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
template void CUDA::print_impl<float> (const CUDANet::Tensor &input);
|
||||
|
||||
template <typename T>
|
||||
void CUDA::print_impl(const CUDANet::Tensor &input) {
|
||||
auto length = input.numel();
|
||||
std::vector<T> h_vec(input.numel());
|
||||
|
||||
CUDA_CHECK(cudaMemcpy(
|
||||
h_vec.data(), static_cast<const T*>(input.device_ptr()), sizeof(T) * length, cudaMemcpyDeviceToHost
|
||||
));
|
||||
|
||||
for (int i = 0; i < length; ++i) {
|
||||
std::cout << h_vec[i] << ", ";
|
||||
}
|
||||
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
void CUDA::zero(CUDANet::Tensor &input) {
|
||||
fill(input, 0);
|
||||
}
|
||||
|
||||
void CUDA::fill(CUDANet::Tensor &input, int value) {
|
||||
switch (input.get_dtype()) {
|
||||
case DType::FLOAT32:
|
||||
fill_impl<float>(input, value);
|
||||
break;
|
||||
|
||||
default:
|
||||
throw std::runtime_error("Unsupported dtype");
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
template void CUDA::fill_impl<float>(CUDANet::Tensor &input, int value);
|
||||
|
||||
template <typename T>
|
||||
void CUDA::fill_impl(CUDANet::Tensor &input, int value) {
|
||||
CUDA_CHECK(cudaMemset(static_cast<T*>(input.device_ptr()), value, sizeof(T) * input.numel()));
|
||||
}
|
||||
|
||||
void CUDA::copy_to_device(CUDANet::Tensor &tensor, void *data, size_t size) {
|
||||
switch (tensor.get_dtype()) {
|
||||
case DType::FLOAT32:
|
||||
copy_to_device_impl<float>(tensor, data, size);
|
||||
break;
|
||||
|
||||
default:
|
||||
throw std::runtime_error("Unsupported dtype");
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
template void CUDA::copy_to_device_impl<float>(CUDANet::Tensor &tensor, void *data, size_t size);
|
||||
|
||||
template <typename T>
|
||||
void CUDA::copy_to_device_impl(CUDANet::Tensor &tensor, void *data, size_t size) {
|
||||
CUDA_CHECK(cudaMemcpy(static_cast<T*>(tensor.device_ptr()), data, size, cudaMemcpyHostToDevice));
|
||||
}
|
||||
|
||||
void CUDA::sum(const CUDANet::Tensor &input, CUDANet::Tensor &sum) {
|
||||
switch (input.get_dtype()) {
|
||||
case DType::FLOAT32:
|
||||
sum_impl<float>(input, sum);
|
||||
break;
|
||||
|
||||
default:
|
||||
throw std::runtime_error("Unsupported dtype");
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
template void CUDA::sum_impl<float>(const CUDANet::Tensor &input, CUDANet::Tensor &sum);
|
||||
|
||||
template <typename T>
|
||||
void CUDA::sum_impl(const CUDANet::Tensor &input, CUDANet::Tensor &sum) {
|
||||
auto length = input.numel();
|
||||
const int gridSize = (length + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
|
||||
CUDANet::Kernels::sum_reduce<<<gridSize, BLOCK_SIZE>>>(
|
||||
static_cast<const T*>(input.device_ptr()), static_cast<T*>(sum.device_ptr()), length
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
int remaining = gridSize;
|
||||
while (remaining > 1) {
|
||||
int blocks_needed = (remaining + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
CUDANet::Kernels::sum_reduce<<<blocks_needed, BLOCK_SIZE>>>(static_cast<T*>(sum.device_ptr()), static_cast<T*>(sum.device_ptr()), remaining);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
remaining = blocks_needed;
|
||||
}
|
||||
}
|
||||
|
||||
void CUDA::max(const CUDANet::Tensor &input, CUDANet::Tensor &max) {
|
||||
switch (input.get_dtype()) {
|
||||
case DType::FLOAT32:
|
||||
max_impl<float>(input, max);
|
||||
break;
|
||||
|
||||
default:
|
||||
throw std::runtime_error("Unsupported dtype");
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
template void CUDA::max_impl<float>(const CUDANet::Tensor &input, CUDANet::Tensor &max);
|
||||
|
||||
template <typename T>
|
||||
void CUDA::max_impl(const CUDANet::Tensor &input, CUDANet::Tensor &max) {
|
||||
auto length = input.numel();
|
||||
const int grid_size = (length + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
|
||||
Kernels::max_reduce<<<grid_size, BLOCK_SIZE>>>(static_cast<const T*>(input.device_ptr()), static_cast<T*>(max.device_ptr()), length);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
int remaining = grid_size;
|
||||
|
||||
while (remaining > 1) {
|
||||
int blocks_needed = (remaining + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
CUDANet::Kernels::max_reduce<<<blocks_needed, BLOCK_SIZE>>>(static_cast<T*>(max.device_ptr()), static_cast<T*>(max.device_ptr()), remaining);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
remaining = blocks_needed;
|
||||
}
|
||||
}
|
||||
@@ -1,26 +0,0 @@
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
#include <cstdio>
|
||||
#include <cstdlib>
|
||||
|
||||
#include "cuda_helper.cuh"
|
||||
|
||||
cudaDeviceProp initializeCUDA() {
|
||||
int deviceCount;
|
||||
CUDA_CHECK(cudaGetDeviceCount(&deviceCount));
|
||||
|
||||
if (deviceCount == 0) {
|
||||
std::fprintf(stderr, "No CUDA devices found. Exiting.\n");
|
||||
std::exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
int device = 0;
|
||||
CUDA_CHECK(cudaSetDevice(device));
|
||||
|
||||
cudaDeviceProp deviceProp;
|
||||
CUDA_CHECK(cudaGetDeviceProperties(&deviceProp, device));
|
||||
|
||||
std::printf("Using CUDA device %d: %s\n", device, deviceProp.name);
|
||||
|
||||
return deviceProp;
|
||||
}
|
||||
@@ -1,107 +0,0 @@
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
|
||||
#include "vector.cuh"
|
||||
#include "matmul.cuh"
|
||||
#include "cuda_helper.cuh"
|
||||
|
||||
using namespace CUDANet;
|
||||
|
||||
void Utils::print_vec(const float* d_vec, const unsigned int length) {
|
||||
std::vector<float> h_vec(length);
|
||||
CUDA_CHECK(cudaMemcpy(
|
||||
h_vec.data(), d_vec, sizeof(float) * length, cudaMemcpyDeviceToHost
|
||||
));
|
||||
|
||||
for (int i = 0; i < length; ++i) {
|
||||
std::cout << h_vec[i] << ", ";
|
||||
}
|
||||
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
void Utils::clear(float* d_vec, const unsigned int length) {
|
||||
CUDA_CHECK(cudaMemset(d_vec, 0, sizeof(float) * length));
|
||||
}
|
||||
|
||||
void Utils::max(const float* d_vec, float* d_max, const unsigned int length) {
|
||||
|
||||
const int grid_size = (length + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
Kernels::max_reduce<<<grid_size, BLOCK_SIZE>>>(d_vec, d_max, length);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
int remaining = grid_size;
|
||||
|
||||
while (remaining > 1) {
|
||||
int blocks_needed = (remaining + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
CUDANet::Kernels::max_reduce<<<blocks_needed, BLOCK_SIZE>>>(d_max, d_max, remaining);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
remaining = blocks_needed;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void Utils::sum(const float* d_vec, float* d_sum, const unsigned int length) {
|
||||
|
||||
const int gridSize = (length + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
|
||||
CUDANet::Kernels::sum_reduce<<<gridSize, BLOCK_SIZE>>>(
|
||||
d_vec, d_sum, length
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
int remaining = gridSize;
|
||||
while (remaining > 1) {
|
||||
int blocks_needed = (remaining + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
CUDANet::Kernels::sum_reduce<<<blocks_needed, BLOCK_SIZE>>>(d_sum, d_sum, remaining);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
remaining = blocks_needed;
|
||||
}
|
||||
}
|
||||
|
||||
void Utils::mean(const float* d_vec, float* d_mean, float *d_length, int length) {
|
||||
Utils::sum(d_vec, d_mean, length);
|
||||
|
||||
const int gridSize = (length + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
Kernels::vec_scalar_div<<<gridSize, BLOCK_SIZE>>>(
|
||||
d_mean,
|
||||
d_mean,
|
||||
d_length,
|
||||
length
|
||||
);
|
||||
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
}
|
||||
|
||||
|
||||
void Utils::var(float* d_vec, float* d_var, float *d_length, const unsigned int length) {
|
||||
|
||||
const int gridSize = (length + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
|
||||
Kernels::vec_vec_mul<<<gridSize, BLOCK_SIZE>>>(
|
||||
d_vec,
|
||||
d_vec,
|
||||
d_var,
|
||||
length
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
// Sum over all differences
|
||||
Utils::sum(
|
||||
d_var,
|
||||
d_var,
|
||||
length
|
||||
);
|
||||
|
||||
// Divide by difference sum / length -> variance
|
||||
Kernels::vec_scalar_div<<<gridSize, BLOCK_SIZE>>>(
|
||||
d_var,
|
||||
d_var,
|
||||
d_length,
|
||||
length
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
}
|
||||
@@ -1,31 +1,87 @@
|
||||
#include <format>
|
||||
#include <stdexcept>
|
||||
#include <vector>
|
||||
|
||||
#include "activation.hpp"
|
||||
#include "layers/activation.hpp"
|
||||
#include "tensor.hpp"
|
||||
|
||||
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
Activation::Activation(ActivationType activation, const int length)
|
||||
: activationType(activation), length(length) {
|
||||
#ifdef USE_CUDA
|
||||
initCUDA();
|
||||
#endif
|
||||
Activation::Activation(
|
||||
ActivationType activation,
|
||||
const CUDANet::Shape& shape,
|
||||
CUDANet::Backend* backend
|
||||
)
|
||||
: Activation(activation, shape, backend->get_default_dtype(), backend) {}
|
||||
|
||||
Activation::Activation(
|
||||
ActivationType activation,
|
||||
const CUDANet::Shape& shape,
|
||||
CUDANet::DType dtype,
|
||||
CUDANet::Backend* backend
|
||||
)
|
||||
: activation_type(activation),
|
||||
shape(shape),
|
||||
backend(backend) {
|
||||
this->dtype = dtype;
|
||||
|
||||
if (shape.size() != 1) {
|
||||
throw InvalidShapeException("input", 1, shape.size());
|
||||
}
|
||||
|
||||
auto length = shape[0];
|
||||
|
||||
if (activation_type == SOFTMAX) {
|
||||
softmax_sum =
|
||||
CUDANet::Tensor({static_cast<size_t>(length)}, dtype, backend);
|
||||
tensor_max =
|
||||
CUDANet::Tensor({static_cast<size_t>(length)}, dtype, backend);
|
||||
}
|
||||
}
|
||||
|
||||
Activation::~Activation() {
|
||||
#ifdef USE_CUDA
|
||||
delCUDA();
|
||||
#endif
|
||||
CUDANet::Tensor& Activation::forward(CUDANet::Tensor& input) {
|
||||
switch (activation_type) {
|
||||
case ActivationType::SIGMOID:
|
||||
backend->sigmoid(input);
|
||||
break;
|
||||
case ActivationType::RELU:
|
||||
backend->relu(input);
|
||||
break;
|
||||
case ActivationType::SOFTMAX:
|
||||
backend->softmax(input, tensor_max, softmax_sum);
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
return input;
|
||||
}
|
||||
|
||||
void Activation::activateCPU(float* input) {
|
||||
throw std::logic_error("Not implemented");
|
||||
CUDANet::Shape Activation::input_shape() {
|
||||
return shape;
|
||||
}
|
||||
|
||||
void Activation::activate(float* input) {
|
||||
#ifdef USE_CUDA
|
||||
activateCUDA(input);
|
||||
#else
|
||||
activateCPU(input);
|
||||
#endif
|
||||
CUDANet::Shape Activation::output_shape() {
|
||||
return shape;
|
||||
}
|
||||
|
||||
size_t Activation::input_size() {
|
||||
return shape[0];
|
||||
}
|
||||
|
||||
size_t Activation::output_size() {
|
||||
return shape[0];
|
||||
}
|
||||
|
||||
void Activation::set_weights(void* input) {}
|
||||
|
||||
size_t Activation::get_weights_size() {
|
||||
return 0;
|
||||
}
|
||||
|
||||
void Activation::set_biases(void* input) {}
|
||||
|
||||
size_t Activation::get_biases_size() {
|
||||
return 0;
|
||||
}
|
||||
@@ -1,44 +1,32 @@
|
||||
#include "add.hpp"
|
||||
|
||||
#include <stddef.h>
|
||||
#include "layers/add.hpp"
|
||||
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
|
||||
Add::Add(int inputSize)
|
||||
: inputSize(inputSize) {
|
||||
Add::Add(CUDANet::Shape a_shape, CUDANet::Shape b_shape, CUDANet::Backend* backend)
|
||||
: Add(a_shape, b_shape, backend->get_default_dtype(), backend) {}
|
||||
|
||||
output = new float[inputSize];
|
||||
|
||||
#ifdef USE_CUDA
|
||||
initCUDA();
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
|
||||
Add::~Add() {
|
||||
#ifdef USE_CUDA
|
||||
delCUDA();
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
float* Add::forward(const float* inputA, const float* inputB) {
|
||||
|
||||
#ifdef USE_CUDA
|
||||
return forwardCUDA(inputA, inputB);
|
||||
#else
|
||||
return forwardCPU(inputA, inputB);
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
float* Add::forwardCPU(const float* inputA, const float* inputB) {
|
||||
for (size_t i = 0; i < inputSize; i++)
|
||||
{
|
||||
output[i] = inputA[i] + inputB[i];
|
||||
Add::Add(CUDANet::Shape a_shape, CUDANet::Shape b_shape, CUDANet::DType dtype, CUDANet::Backend* backend)
|
||||
: backend(backend), dtype(dtype) {
|
||||
if (a_shape != b_shape) {
|
||||
throw InvalidShapeException(
|
||||
"Add requires matching dimensions", a_shape, b_shape
|
||||
);
|
||||
}
|
||||
|
||||
return output;
|
||||
}
|
||||
out_shape = a_shape;
|
||||
output = CUDANet::Tensor(out_shape, dtype, backend);
|
||||
}
|
||||
|
||||
Add::~Add() {}
|
||||
|
||||
CUDANet::Tensor&
|
||||
Add::forward(CUDANet::Tensor& input_a, CUDANet::Tensor& input_b) {
|
||||
output.zero();
|
||||
backend->add(
|
||||
input_a,
|
||||
input_b,
|
||||
output
|
||||
);
|
||||
return output;
|
||||
}
|
||||
|
||||
@@ -1,101 +1,146 @@
|
||||
#include <format>
|
||||
#include <stdexcept>
|
||||
|
||||
#include "avg_pooling.hpp"
|
||||
#include "layers/avg_pool.hpp"
|
||||
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
AvgPooling2d::AvgPooling2d(
|
||||
shape2d inputSize,
|
||||
int nChannels,
|
||||
shape2d poolingSize,
|
||||
shape2d stride,
|
||||
shape2d padding,
|
||||
ActivationType activationType
|
||||
AvgPool2d::AvgPool2d(
|
||||
CUDANet::Shape input_shape,
|
||||
CUDANet::Shape pool_shape,
|
||||
CUDANet::Shape stride_shape,
|
||||
CUDANet::Shape padding_shape,
|
||||
CUDANet::Backend* backend
|
||||
)
|
||||
: inputSize(inputSize),
|
||||
nChannels(nChannels),
|
||||
poolingSize(poolingSize),
|
||||
stride(stride),
|
||||
padding(padding) {
|
||||
outputSize = {
|
||||
(inputSize.first + 2 * padding.first - poolingSize.first) /
|
||||
stride.first +
|
||||
: AvgPool2d(input_shape, pool_shape, stride_shape, padding_shape, backend->get_default_dtype(), backend) {}
|
||||
|
||||
AvgPool2d::AvgPool2d(
|
||||
CUDANet::Shape input_shape,
|
||||
CUDANet::Shape pool_shape,
|
||||
CUDANet::Shape stride_shape,
|
||||
CUDANet::Shape padding_shape,
|
||||
CUDANet::DType dtype,
|
||||
CUDANet::Backend* backend
|
||||
)
|
||||
: in_shape(input_shape),
|
||||
pool_shape(pool_shape),
|
||||
stride_shape(stride_shape),
|
||||
padding_shape(padding_shape),
|
||||
backend(backend) {
|
||||
if (in_shape.size() != 3) {
|
||||
throw InvalidShapeException("input", 3, in_shape.size());
|
||||
}
|
||||
|
||||
if (pool_shape.size() != 2) {
|
||||
throw InvalidShapeException("pool", 2, pool_shape.size());
|
||||
}
|
||||
|
||||
if (stride_shape.size() != 2) {
|
||||
throw InvalidShapeException("stride", 2, stride_shape.size());
|
||||
}
|
||||
|
||||
if (padding_shape.size() != 2) {
|
||||
throw InvalidShapeException("padding", 2, padding_shape.size());
|
||||
}
|
||||
|
||||
this->dtype = dtype;
|
||||
|
||||
out_shape = {
|
||||
(in_shape[0] + 2 * padding_shape[0] - pool_shape[0]) / stride_shape[0] +
|
||||
1,
|
||||
(inputSize.second + 2 * padding.second - poolingSize.second) /
|
||||
stride.second +
|
||||
1
|
||||
(in_shape[1] + 2 * padding_shape[1] - pool_shape[1]) / stride_shape[1] +
|
||||
1,
|
||||
in_shape[2]
|
||||
};
|
||||
|
||||
activation = new Activation(
|
||||
activationType, outputSize.first * outputSize.second * nChannels
|
||||
output = CUDANet::Tensor(
|
||||
Shape{out_shape[0] * out_shape[1] * out_shape[2]},
|
||||
dtype, backend
|
||||
);
|
||||
|
||||
#ifdef USE_CUDA
|
||||
initCUDA();
|
||||
#endif
|
||||
}
|
||||
|
||||
AvgPooling2d::~AvgPooling2d() {
|
||||
#ifdef USE_CUDA
|
||||
delCUDA();
|
||||
#endif
|
||||
delete activation;
|
||||
AvgPool2d::~AvgPool2d() {}
|
||||
|
||||
CUDANet::Tensor& AvgPool2d::forward(CUDANet::Tensor& input) {
|
||||
output.zero();
|
||||
backend->avg_pool2d(
|
||||
input,
|
||||
output,
|
||||
in_shape,
|
||||
pool_shape,
|
||||
stride_shape,
|
||||
padding_shape,
|
||||
out_shape
|
||||
);
|
||||
return output;
|
||||
}
|
||||
|
||||
float* AvgPooling2d::forwardCPU(const float* input) {
|
||||
throw std::logic_error("Not implemented");
|
||||
CUDANet::Shape AvgPool2d::input_shape() {
|
||||
return in_shape;
|
||||
}
|
||||
|
||||
float* AvgPooling2d::forward(const float* input) {
|
||||
#ifdef USE_CUDA
|
||||
return forwardCUDA(input);
|
||||
#else
|
||||
return forwardCPU(input);
|
||||
#endif
|
||||
CUDANet::Shape AvgPool2d::output_shape() {
|
||||
return out_shape;
|
||||
}
|
||||
|
||||
int AvgPooling2d::getOutputSize() {
|
||||
return outputSize.first * outputSize.second * nChannels;
|
||||
size_t AvgPool2d::input_size() {
|
||||
return dtype_size(dtype) * in_shape[0] * in_shape[1] * in_shape[2];
|
||||
}
|
||||
|
||||
int AvgPooling2d::getInputSize() {
|
||||
return inputSize.first * inputSize.second * nChannels;
|
||||
size_t AvgPool2d::output_size() {
|
||||
return dtype_size(dtype) * out_shape[0] * out_shape[1] * out_shape[2];
|
||||
}
|
||||
|
||||
shape2d AvgPooling2d::getOutputDims() {
|
||||
return outputSize;
|
||||
void AvgPool2d::set_weights(void* input) {}
|
||||
|
||||
size_t AvgPool2d::get_weights_size() {
|
||||
return 0;
|
||||
}
|
||||
|
||||
AdaptiveAvgPooling2d::AdaptiveAvgPooling2d(
|
||||
shape2d inputShape,
|
||||
int nChannels,
|
||||
shape2d outputShape,
|
||||
ActivationType activationType
|
||||
void AvgPool2d::set_biases(void* input) {}
|
||||
|
||||
size_t AvgPool2d::get_biases_size() {
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
AdaptiveAvgPool2d::AdaptiveAvgPool2d(
|
||||
CUDANet::Shape input_shape,
|
||||
CUDANet::Shape output_shape,
|
||||
CUDANet::Backend *backend
|
||||
)
|
||||
: AvgPooling2d(
|
||||
inputShape,
|
||||
nChannels,
|
||||
{1, 1},
|
||||
{1, 1},
|
||||
{0, 0},
|
||||
activationType
|
||||
) {
|
||||
stride = {
|
||||
inputShape.first / outputShape.first,
|
||||
inputShape.second / outputShape.second
|
||||
};
|
||||
poolingSize = {
|
||||
inputShape.first - (outputShape.first - 1) * stride.first,
|
||||
inputShape.second - (outputShape.second - 1) * stride.second
|
||||
};
|
||||
padding = {(poolingSize.first - 1) / 2, (poolingSize.second - 1) / 2};
|
||||
outputSize = outputShape;
|
||||
: AdaptiveAvgPool2d(input_shape, output_shape, backend->get_default_dtype(), backend) {}
|
||||
|
||||
activation = new Activation(
|
||||
activationType, outputSize.first * outputSize.second * nChannels
|
||||
AdaptiveAvgPool2d::AdaptiveAvgPool2d(
|
||||
CUDANet::Shape input_shape,
|
||||
CUDANet::Shape output_shape,
|
||||
CUDANet::DType dtype,
|
||||
CUDANet::Backend *backend
|
||||
)
|
||||
: AvgPool2d(
|
||||
input_shape,
|
||||
// pool_shape
|
||||
{
|
||||
input_shape[0] - (output_shape[0] - 1) * (input_shape[0] / output_shape[0]),
|
||||
input_shape[1] - (output_shape[1] - 1) * (input_shape[1] / output_shape[1])
|
||||
},
|
||||
// stride_shape
|
||||
{
|
||||
input_shape[0] / output_shape[0],
|
||||
input_shape[1] / output_shape[1]
|
||||
},
|
||||
// padding_shape
|
||||
{
|
||||
(input_shape[0] - (output_shape[0] - 1) * (input_shape[0] / output_shape[0]) - 1) / 2,
|
||||
(input_shape[1] - (output_shape[1] - 1) * (input_shape[1] / output_shape[1]) - 1) / 2
|
||||
},
|
||||
dtype,
|
||||
backend
|
||||
) {
|
||||
out_shape = output_shape;
|
||||
|
||||
output = CUDANet::Tensor(
|
||||
Shape{out_shape[0] * out_shape[1] * out_shape[2]},
|
||||
dtype, backend
|
||||
);
|
||||
|
||||
#ifdef USE_CUDA
|
||||
initCUDA();
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,133 +1,111 @@
|
||||
#include "batch_norm.hpp"
|
||||
|
||||
#include <stdexcept>
|
||||
#include <vector>
|
||||
|
||||
#include "activation.hpp"
|
||||
#include "layers/batch_norm.hpp"
|
||||
#include "layer.hpp"
|
||||
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
BatchNorm2d::BatchNorm2d(
|
||||
shape2d inputSize,
|
||||
int inputChannels,
|
||||
float epsilon,
|
||||
ActivationType activationType
|
||||
CUDANet::Shape input_shape,
|
||||
float eps,
|
||||
CUDANet::Backend *backend
|
||||
)
|
||||
: inputSize(inputSize), inputChannels(inputChannels), epsilon(epsilon) {
|
||||
activation = new Activation(
|
||||
activationType, inputSize.first * inputSize.second * inputChannels
|
||||
: BatchNorm2d(input_shape, eps, backend->get_default_dtype(), backend) {}
|
||||
|
||||
BatchNorm2d::BatchNorm2d(
|
||||
CUDANet::Shape input_shape,
|
||||
float eps,
|
||||
CUDANet::DType dtype,
|
||||
CUDANet::Backend *backend
|
||||
)
|
||||
: in_shape(input_shape), backend(backend) {
|
||||
|
||||
if (in_shape.size() != 3) {
|
||||
throw InvalidShapeException("input", 3, in_shape.size());
|
||||
}
|
||||
|
||||
this->dtype = dtype;
|
||||
|
||||
epsilon = CUDANet::Tensor({1}, dtype, backend);
|
||||
epsilon.set_data(&eps);
|
||||
|
||||
running_mean = CUDANet::Tensor({in_shape[2]}, dtype, backend);
|
||||
running_mean.zero();
|
||||
|
||||
running_var = CUDANet::Tensor({in_shape[2]}, dtype, backend);
|
||||
running_var.fill(1);
|
||||
|
||||
weights = CUDANet::Tensor({in_shape[2]}, dtype, backend);
|
||||
weights.fill(1);
|
||||
|
||||
biases = CUDANet::Tensor({in_shape[2]}, dtype, backend);
|
||||
biases.zero();
|
||||
|
||||
output = CUDANet::Tensor(in_shape, dtype, backend);
|
||||
}
|
||||
|
||||
BatchNorm2d::~BatchNorm2d() {}
|
||||
|
||||
CUDANet::Tensor& BatchNorm2d::forward(CUDANet::Tensor& input) {
|
||||
output.zero();
|
||||
backend->batch_norm(
|
||||
input,
|
||||
output,
|
||||
in_shape,
|
||||
weights,
|
||||
biases,
|
||||
running_mean,
|
||||
running_var,
|
||||
epsilon
|
||||
);
|
||||
|
||||
weights.resize(inputChannels);
|
||||
biases.resize(inputChannels);
|
||||
|
||||
running_mean.resize(inputChannels);
|
||||
running_var.resize(inputChannels);
|
||||
|
||||
initializeWeights();
|
||||
initializeBiases();
|
||||
initializeRunningMean();
|
||||
initializeRunningVar();
|
||||
|
||||
#ifdef USE_CUDA
|
||||
initCUDA();
|
||||
toCuda();
|
||||
#endif
|
||||
return output;
|
||||
}
|
||||
|
||||
BatchNorm2d::~BatchNorm2d() {
|
||||
#ifdef USE_CUDA
|
||||
delCUDA();
|
||||
#endif
|
||||
CUDANet::Shape BatchNorm2d::input_shape() {
|
||||
return in_shape;
|
||||
}
|
||||
|
||||
void BatchNorm2d::initializeWeights() {
|
||||
std::fill(weights.begin(), weights.end(), 1.0f);
|
||||
CUDANet::Shape BatchNorm2d::output_shape() {
|
||||
return in_shape;
|
||||
}
|
||||
|
||||
void BatchNorm2d::initializeBiases() {
|
||||
std::fill(biases.begin(), biases.end(), 0.0f);
|
||||
size_t BatchNorm2d::input_size() {
|
||||
return dtype_size(dtype) * in_shape[0] * in_shape[1] * in_shape[2];
|
||||
}
|
||||
|
||||
void BatchNorm2d::initializeRunningMean() {
|
||||
std::fill(running_mean.begin(), running_mean.end(), 0.0f);
|
||||
size_t BatchNorm2d::output_size() {
|
||||
return dtype_size(dtype) * in_shape[0] * in_shape[1] * in_shape[2];
|
||||
}
|
||||
|
||||
void BatchNorm2d::initializeRunningVar() {
|
||||
std::fill(running_var.begin(), running_var.end(), 1.0f);
|
||||
void BatchNorm2d::set_weights(void* input) {
|
||||
weights.set_data(input);
|
||||
}
|
||||
|
||||
void BatchNorm2d::setWeights(const float* weights_input) {
|
||||
std::copy(weights_input, weights_input + weights.size(), weights.begin());
|
||||
#ifdef USE_CUDA
|
||||
toCuda();
|
||||
#endif
|
||||
size_t BatchNorm2d::get_weights_size() {
|
||||
return weights.size();
|
||||
}
|
||||
|
||||
std::vector<float> BatchNorm2d::getWeights() {
|
||||
return weights;
|
||||
void BatchNorm2d::set_biases(void* input) {
|
||||
biases.set_data(input);
|
||||
}
|
||||
|
||||
void BatchNorm2d::setBiases(const float* biases_input) {
|
||||
std::copy(biases_input, biases_input + biases.size(), biases.begin());
|
||||
#ifdef USE_CUDA
|
||||
toCuda();
|
||||
#endif
|
||||
size_t BatchNorm2d::get_biases_size() {
|
||||
return biases.size();
|
||||
}
|
||||
|
||||
std::vector<float> BatchNorm2d::getBiases() {
|
||||
return biases;
|
||||
void BatchNorm2d::set_running_mean(void* input) {
|
||||
running_mean.set_data(input);
|
||||
}
|
||||
|
||||
void BatchNorm2d::setRunningMean(const float* running_mean_input) {
|
||||
std::copy(
|
||||
running_mean_input, running_mean_input + inputChannels,
|
||||
running_mean.begin()
|
||||
);
|
||||
#ifdef USE_CUDA
|
||||
toCuda();
|
||||
#endif
|
||||
size_t BatchNorm2d::get_running_mean_size() {
|
||||
return running_mean.size();
|
||||
}
|
||||
|
||||
std::vector<float> BatchNorm2d::getRunningMean() {
|
||||
return running_mean;
|
||||
void BatchNorm2d::set_running_var(void* input) {
|
||||
running_var.set_data(input);
|
||||
}
|
||||
|
||||
void BatchNorm2d::setRunningVar(const float* running_var_input) {
|
||||
std::copy(
|
||||
running_var_input, running_var_input + inputChannels,
|
||||
running_var.begin()
|
||||
);
|
||||
#ifdef USE_CUDA
|
||||
toCuda();
|
||||
#endif
|
||||
}
|
||||
|
||||
std::vector<float> BatchNorm2d::getRunningVar() {
|
||||
return running_var;
|
||||
}
|
||||
|
||||
int BatchNorm2d::getInputSize() {
|
||||
return inputSize.first * inputSize.second * inputChannels;
|
||||
}
|
||||
|
||||
int BatchNorm2d::getOutputSize() {
|
||||
return inputSize.first * inputSize.second * inputChannels;
|
||||
}
|
||||
|
||||
shape2d BatchNorm2d::getOutputDims() {
|
||||
return inputSize;
|
||||
}
|
||||
|
||||
float* BatchNorm2d::forwardCPU(const float* input) {
|
||||
throw std::logic_error("Not implemented");
|
||||
}
|
||||
|
||||
float* BatchNorm2d::forward(const float* input) {
|
||||
#ifdef USE_CUDA
|
||||
return forwardCUDA(input);
|
||||
#else
|
||||
return forwardCPU(input);
|
||||
#endif
|
||||
size_t BatchNorm2d::get_running_var_size() {
|
||||
return running_var.size();
|
||||
}
|
||||
@@ -1,34 +1,35 @@
|
||||
#include <stdexcept>
|
||||
|
||||
#include "concat.hpp"
|
||||
#include "layers/concat.hpp"
|
||||
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
Concat::Concat(const int inputASize, const int inputBSize)
|
||||
: inputASize(inputASize), inputBSize(inputBSize) {
|
||||
#ifdef USE_CUDA
|
||||
initCUDA();
|
||||
#endif
|
||||
Concat::Concat(const CUDANet::Shape a_shape, const CUDANet::Shape b_shape, CUDANet::Backend *backend)
|
||||
: Concat(a_shape, b_shape, backend->get_default_dtype(), backend) {}
|
||||
|
||||
Concat::Concat(const CUDANet::Shape a_shape, const CUDANet::Shape b_shape, CUDANet::DType dtype, CUDANet::Backend *backend)
|
||||
: a_shape(a_shape), b_shape(b_shape), backend(backend), dtype(dtype) {
|
||||
if (a_shape[0] != b_shape[0] || a_shape[1] != b_shape[1]) {
|
||||
throw InvalidShapeException(
|
||||
"Concat requires matching height and width dimensions", a_shape,
|
||||
b_shape
|
||||
);
|
||||
}
|
||||
|
||||
out_shape = {a_shape[0], a_shape[1], a_shape[2] + b_shape[2]};
|
||||
output = CUDANet::Tensor(out_shape, dtype, backend);
|
||||
}
|
||||
|
||||
Concat::~Concat() {
|
||||
#ifdef USE_CUDA
|
||||
delCUDA();
|
||||
#endif
|
||||
Concat::~Concat() {}
|
||||
|
||||
CUDANet::Tensor& Concat::forward(CUDANet::Tensor& input_a, CUDANet::Tensor& input_b) {
|
||||
output.zero();
|
||||
backend->concat(
|
||||
input_a,
|
||||
input_b,
|
||||
output
|
||||
);
|
||||
return output;
|
||||
}
|
||||
|
||||
float* Concat::forwardCPU(const float* input_A, const float* input_B) {
|
||||
throw std::logic_error("Not implemented");
|
||||
}
|
||||
|
||||
float* Concat::forward(const float* input_A, const float* input_B) {
|
||||
#ifdef USE_CUDA
|
||||
return forwardCUDA(input_A, input_B);
|
||||
#else
|
||||
return forwardCPU(input_A, input_B);
|
||||
#endif
|
||||
}
|
||||
|
||||
int Concat::getOutputSize() {
|
||||
return inputASize + inputBSize;
|
||||
};
|
||||
CUDANet::Shape Concat::output_shape() {
|
||||
return out_shape;
|
||||
}
|
||||
@@ -1,111 +1,124 @@
|
||||
#include <format>
|
||||
#include <stdexcept>
|
||||
#include <vector>
|
||||
|
||||
#include "activation.hpp"
|
||||
#include "conv2d.hpp"
|
||||
#include "layers/conv2d.hpp"
|
||||
#include "layer.hpp"
|
||||
#include "tensor.hpp"
|
||||
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
Conv2d::Conv2d(
|
||||
shape2d inputSize,
|
||||
int inputChannels,
|
||||
shape2d kernelSize,
|
||||
shape2d stride,
|
||||
int numFilters,
|
||||
shape2d paddingSize,
|
||||
ActivationType activationType
|
||||
CUDANet::Shape input_shape,
|
||||
CUDANet::Shape kernel_shape,
|
||||
CUDANet::Shape stride_shape,
|
||||
CUDANet::Shape padding_shape,
|
||||
CUDANet::Backend* backend
|
||||
)
|
||||
: inputSize(inputSize),
|
||||
inputChannels(inputChannels),
|
||||
kernelSize(kernelSize),
|
||||
stride(stride),
|
||||
numFilters(numFilters),
|
||||
paddingSize(paddingSize) {
|
||||
outputSize = {
|
||||
(inputSize.first - kernelSize.first + 2 * paddingSize.first) /
|
||||
stride.first +
|
||||
: Conv2d(input_shape, kernel_shape, stride_shape, padding_shape, backend->get_default_dtype(), backend) {}
|
||||
|
||||
Conv2d::Conv2d(
|
||||
CUDANet::Shape input_shape,
|
||||
CUDANet::Shape kernel_shape,
|
||||
CUDANet::Shape stride_shape,
|
||||
CUDANet::Shape padding_shape,
|
||||
CUDANet::DType dtype,
|
||||
CUDANet::Backend* backend
|
||||
)
|
||||
: in_shape(input_shape),
|
||||
kernel_shape(kernel_shape),
|
||||
stride_shape(stride_shape),
|
||||
padding_shape(padding_shape),
|
||||
backend(backend) {
|
||||
if (in_shape.size() != 3) {
|
||||
throw InvalidShapeException("input", 3, in_shape.size());
|
||||
}
|
||||
|
||||
if (kernel_shape.size() != 3) {
|
||||
throw InvalidShapeException("kernel", 3, kernel_shape.size());
|
||||
}
|
||||
|
||||
if (stride_shape.size() != 2) {
|
||||
throw InvalidShapeException("stride", 3, stride_shape.size());
|
||||
}
|
||||
|
||||
if (padding_shape.size() != 2) {
|
||||
throw InvalidShapeException("padding", 3, padding_shape.size());
|
||||
}
|
||||
|
||||
this->dtype = dtype;
|
||||
|
||||
out_shape = {
|
||||
(in_shape[0] - kernel_shape[0] + 2 * padding_shape[0]) /
|
||||
stride_shape[0] +
|
||||
1,
|
||||
(inputSize.second - kernelSize.second + 2 * paddingSize.second) /
|
||||
stride.second +
|
||||
1
|
||||
(in_shape[1] - kernel_shape[1] + 2 * padding_shape[1]) /
|
||||
stride_shape[1] +
|
||||
1,
|
||||
kernel_shape[2]
|
||||
};
|
||||
|
||||
activation = new Activation(
|
||||
activationType, outputSize.first * outputSize.second * numFilters
|
||||
output = CUDANet::Tensor(
|
||||
Shape{out_shape[0], out_shape[1], out_shape[2]},
|
||||
dtype, backend
|
||||
);
|
||||
|
||||
weights.resize(
|
||||
kernelSize.first * kernelSize.second * inputChannels * numFilters
|
||||
weights = CUDANet::Tensor(
|
||||
Shape{
|
||||
kernel_shape[0], kernel_shape[1], kernel_shape[2], in_shape[2]
|
||||
},
|
||||
dtype, backend
|
||||
);
|
||||
biases = CUDANet::Tensor(
|
||||
Shape{kernel_shape[2]}, dtype, backend
|
||||
);
|
||||
initializeWeights();
|
||||
|
||||
biases.resize(numFilters);
|
||||
initializeBiases();
|
||||
|
||||
#ifdef USE_CUDA
|
||||
initCUDA();
|
||||
toCuda();
|
||||
#endif
|
||||
weights.zero();
|
||||
biases.zero();
|
||||
}
|
||||
|
||||
Conv2d::~Conv2d() {
|
||||
#ifdef USE_CUDA
|
||||
delCUDA();
|
||||
#endif
|
||||
delete activation;
|
||||
Conv2d::~Conv2d() {}
|
||||
|
||||
CUDANet::Tensor& Conv2d::forward(CUDANet::Tensor& input) {
|
||||
output.zero();
|
||||
backend->conv2d(
|
||||
weights, biases, input, output, in_shape, padding_shape, kernel_shape,
|
||||
stride_shape, out_shape
|
||||
);
|
||||
return output;
|
||||
}
|
||||
|
||||
void Conv2d::initializeWeights() {
|
||||
std::fill(weights.begin(), weights.end(), 0.0f);
|
||||
CUDANet::Shape Conv2d::input_shape() {
|
||||
return in_shape;
|
||||
}
|
||||
|
||||
void Conv2d::initializeBiases() {
|
||||
std::fill(biases.begin(), biases.end(), 0.0f);
|
||||
CUDANet::Shape Conv2d::output_shape() {
|
||||
return out_shape;
|
||||
}
|
||||
|
||||
void Conv2d::setWeights(const float* weights_input) {
|
||||
std::copy(weights_input, weights_input + weights.size(), weights.begin());
|
||||
#ifdef USE_CUDA
|
||||
toCuda();
|
||||
#endif
|
||||
size_t Conv2d::input_size() {
|
||||
return dtype_size(dtype) * in_shape[0] * in_shape[1] * in_shape[2];
|
||||
}
|
||||
|
||||
std::vector<float> Conv2d::getWeights() {
|
||||
return weights;
|
||||
size_t Conv2d::output_size() {
|
||||
return dtype_size(dtype) * out_shape[0] * out_shape[1] * out_shape[2];
|
||||
}
|
||||
|
||||
void Conv2d::setBiases(const float* biases_input) {
|
||||
std::copy(biases_input, biases_input + biases.size(), biases.begin());
|
||||
#ifdef USE_CUDA
|
||||
toCuda();
|
||||
#endif
|
||||
void Conv2d::set_weights(void* input) {
|
||||
weights.set_data(input);
|
||||
}
|
||||
|
||||
std::vector<float> Conv2d::getBiases() {
|
||||
return biases;
|
||||
size_t Conv2d::get_weights_size() {
|
||||
return weights.size();
|
||||
}
|
||||
|
||||
float* Conv2d::forwardCPU(const float* input) {
|
||||
throw std::logic_error("Not implemented");
|
||||
void Conv2d::set_biases(void* input) {
|
||||
biases.set_data(input);
|
||||
}
|
||||
|
||||
float* Conv2d::forward(const float* input) {
|
||||
#ifdef USE_CUDA
|
||||
return forwardCUDA(input);
|
||||
#else
|
||||
return forwardCPU(input);
|
||||
#endif
|
||||
size_t Conv2d::get_biases_size() {
|
||||
return biases.size();
|
||||
}
|
||||
|
||||
int Conv2d::getOutputSize() {
|
||||
return outputSize.first * outputSize.second * numFilters;
|
||||
}
|
||||
|
||||
int Conv2d::getInputSize() {
|
||||
return inputSize.first * inputSize.second * inputChannels;
|
||||
}
|
||||
|
||||
shape2d Conv2d::getOutputDims() {
|
||||
return outputSize;
|
||||
CUDANet::Shape Conv2d::get_padding_shape() {
|
||||
return padding_shape;
|
||||
}
|
||||
@@ -1,80 +1,74 @@
|
||||
#include "dense.hpp"
|
||||
|
||||
#include <format>
|
||||
#include <stdexcept>
|
||||
|
||||
#include "activation.hpp"
|
||||
#include "layers/dense.hpp"
|
||||
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
Dense::Dense(int inputSize, int outputSize, ActivationType activationType)
|
||||
: inputSize(inputSize), outputSize(outputSize) {
|
||||
// Allocate memory for weights and biases
|
||||
weights.resize(outputSize * inputSize);
|
||||
biases.resize(outputSize);
|
||||
Dense::Dense(CUDANet::Shape in_shape, CUDANet::Shape out_shape, CUDANet::Backend* backend)
|
||||
: Dense(in_shape, out_shape, backend->get_default_dtype(), backend) {}
|
||||
|
||||
initializeWeights();
|
||||
initializeBiases();
|
||||
Dense::Dense(CUDANet::Shape in_shape, CUDANet::Shape out_shape, CUDANet::DType dtype, CUDANet::Backend* backend)
|
||||
: backend(backend),
|
||||
in_shape(in_shape),
|
||||
out_shape(out_shape) {
|
||||
|
||||
activation = new Activation(activationType, outputSize);
|
||||
if (in_shape.size() != 1) {
|
||||
throw InvalidShapeException("input", 1, in_shape.size());
|
||||
}
|
||||
|
||||
#ifdef USE_CUDA
|
||||
initCUDA();
|
||||
#endif
|
||||
if (out_shape.size() != 1) {
|
||||
throw InvalidShapeException("output", 1, out_shape.size());
|
||||
}
|
||||
|
||||
this->dtype = dtype;
|
||||
|
||||
weights = CUDANet::Tensor(Shape{out_shape[0], in_shape[0]}, dtype, backend);
|
||||
biases = CUDANet::Tensor(Shape{out_shape[0]}, dtype, backend);
|
||||
output = CUDANet::Tensor(Shape{out_shape[0]}, dtype, backend);
|
||||
|
||||
weights.zero();
|
||||
biases.zero();
|
||||
output.zero();
|
||||
}
|
||||
|
||||
Dense::~Dense() {
|
||||
delete activation;
|
||||
#ifdef USE_CUDA
|
||||
delCUDA();
|
||||
#endif
|
||||
Dense::~Dense() {}
|
||||
|
||||
CUDANet::Tensor& Dense::forward(CUDANet::Tensor& input) {
|
||||
output.zero();
|
||||
backend->dense(weights, biases, input, output, in_shape[0], out_shape[0]);
|
||||
return output;
|
||||
}
|
||||
|
||||
void Dense::initializeWeights() {
|
||||
std::fill(weights.begin(), weights.end(), 0.0f);
|
||||
CUDANet::Shape Dense::input_shape() {
|
||||
return in_shape;
|
||||
}
|
||||
|
||||
void Dense::initializeBiases() {
|
||||
std::fill(biases.begin(), biases.end(), 0.0f);
|
||||
CUDANet::Shape Dense::output_shape() {
|
||||
return out_shape;
|
||||
}
|
||||
|
||||
float* Dense::forwardCPU(const float* input) {
|
||||
throw std::logic_error("Not implemented");
|
||||
size_t Dense::input_size() {
|
||||
return in_shape[0];
|
||||
};
|
||||
|
||||
size_t Dense::output_size() {
|
||||
return out_shape[0];
|
||||
};
|
||||
|
||||
// TODO: Use dtype
|
||||
void Dense::set_weights(void* input) {
|
||||
weights.set_data(input);
|
||||
}
|
||||
|
||||
float* Dense::forward(const float* input) {
|
||||
#ifdef USE_CUDA
|
||||
return forwardCUDA(input);
|
||||
#else
|
||||
return forwardCPU(input);
|
||||
#endif
|
||||
size_t Dense::get_weights_size() {
|
||||
return weights.size();
|
||||
}
|
||||
|
||||
void Dense::setWeights(const float* weights_input) {
|
||||
std::copy(weights_input, weights_input + weights.size(), weights.begin());
|
||||
#ifdef USE_CUDA
|
||||
toCuda();
|
||||
#endif
|
||||
void Dense::set_biases(void* input) {
|
||||
biases.set_data(input);
|
||||
}
|
||||
|
||||
std::vector<float> Dense::getWeights() {
|
||||
return weights;
|
||||
}
|
||||
|
||||
void Dense::setBiases(const float* biases_input) {
|
||||
std::copy(biases_input, biases_input + biases.size(), biases.begin());
|
||||
#ifdef USE_CUDA
|
||||
toCuda();
|
||||
#endif
|
||||
}
|
||||
|
||||
std::vector<float> Dense::getBiases() {
|
||||
return biases;
|
||||
}
|
||||
|
||||
int Dense::getOutputSize() {
|
||||
return outputSize;
|
||||
}
|
||||
|
||||
int Dense::getInputSize() {
|
||||
return inputSize;
|
||||
size_t Dense::get_biases_size() {
|
||||
return biases.size();
|
||||
}
|
||||
@@ -1,37 +0,0 @@
|
||||
#include <stdexcept>
|
||||
|
||||
#include "input.hpp"
|
||||
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
Input::Input(int inputSize) : inputSize(inputSize) {
|
||||
#ifdef USE_CUDA
|
||||
initCUDA();
|
||||
#endif
|
||||
}
|
||||
|
||||
Input::~Input() {
|
||||
#ifdef USE_CUDA
|
||||
delCUDA();
|
||||
#endif
|
||||
}
|
||||
|
||||
float* Input::forwardCPU(const float* input) {
|
||||
throw std::logic_error("Not implemented");
|
||||
}
|
||||
|
||||
float* Input::forward(const float* input) {
|
||||
#ifdef USE_CUDA
|
||||
return forwardCUDA(input);
|
||||
#else
|
||||
return forwardCPU(input);
|
||||
#endif
|
||||
}
|
||||
|
||||
int Input::getOutputSize() {
|
||||
return inputSize;
|
||||
}
|
||||
|
||||
int Input::getInputSize() {
|
||||
return inputSize;
|
||||
}
|
||||
98
src/layers/max_pool.cpp
Normal file
98
src/layers/max_pool.cpp
Normal file
@@ -0,0 +1,98 @@
|
||||
#include <stdexcept>
|
||||
|
||||
#include "layers/max_pool.hpp"
|
||||
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
MaxPool2d::MaxPool2d(
|
||||
CUDANet::Shape input_shape,
|
||||
CUDANet::Shape pool_shape,
|
||||
CUDANet::Shape stride_shape,
|
||||
CUDANet::Shape padding_shape,
|
||||
CUDANet::Backend* backend
|
||||
)
|
||||
: MaxPool2d(input_shape, pool_shape, stride_shape, padding_shape, backend->get_default_dtype(), backend) {}
|
||||
|
||||
MaxPool2d::MaxPool2d(
|
||||
CUDANet::Shape input_shape,
|
||||
CUDANet::Shape pool_shape,
|
||||
CUDANet::Shape stride_shape,
|
||||
CUDANet::Shape padding_shape,
|
||||
CUDANet::DType dtype,
|
||||
CUDANet::Backend* backend
|
||||
)
|
||||
: in_shape(input_shape),
|
||||
pool_shape(pool_shape),
|
||||
stride_shape(stride_shape),
|
||||
padding_shape(padding_shape),
|
||||
backend(backend) {
|
||||
if (in_shape.size() != 3) {
|
||||
throw InvalidShapeException("input", 3, in_shape.size());
|
||||
}
|
||||
|
||||
if (pool_shape.size() != 2) {
|
||||
throw InvalidShapeException("pool", 2, pool_shape.size());
|
||||
}
|
||||
|
||||
if (stride_shape.size() != 2) {
|
||||
throw InvalidShapeException("stride", 2, stride_shape.size());
|
||||
}
|
||||
|
||||
if (padding_shape.size() != 2) {
|
||||
throw InvalidShapeException("padding", 2, padding_shape.size());
|
||||
}
|
||||
|
||||
this->dtype = dtype;
|
||||
|
||||
out_shape = {
|
||||
(in_shape[0] + 2 * padding_shape[0] - pool_shape[0]) / stride_shape[0] +
|
||||
1,
|
||||
(in_shape[1] + 2 * padding_shape[1] - pool_shape[1]) / stride_shape[1] +
|
||||
1,
|
||||
in_shape[2]
|
||||
};
|
||||
|
||||
output = CUDANet::Tensor(
|
||||
Shape{out_shape[0] * out_shape[1] * out_shape[2]},
|
||||
dtype, backend
|
||||
);
|
||||
}
|
||||
|
||||
MaxPool2d::~MaxPool2d() {}
|
||||
|
||||
CUDANet::Tensor& MaxPool2d::forward(CUDANet::Tensor& input) {
|
||||
output.zero();
|
||||
backend->max_pool2d(
|
||||
input, output, in_shape, pool_shape, stride_shape, padding_shape,
|
||||
out_shape
|
||||
);
|
||||
return output;
|
||||
}
|
||||
|
||||
CUDANet::Shape MaxPool2d::input_shape() {
|
||||
return in_shape;
|
||||
}
|
||||
|
||||
CUDANet::Shape MaxPool2d::output_shape() {
|
||||
return out_shape;
|
||||
}
|
||||
|
||||
size_t MaxPool2d::input_size() {
|
||||
return dtype_size(dtype) * in_shape[0] * in_shape[1] * in_shape[2];
|
||||
}
|
||||
|
||||
size_t MaxPool2d::output_size() {
|
||||
return dtype_size(dtype) * out_shape[0] * out_shape[1] * out_shape[2];
|
||||
}
|
||||
|
||||
void MaxPool2d::set_weights(void* input) {}
|
||||
|
||||
size_t MaxPool2d::get_weights_size() {
|
||||
return 0;
|
||||
}
|
||||
|
||||
void MaxPool2d::set_biases(void* input) {}
|
||||
|
||||
size_t MaxPool2d::get_biases_size() {
|
||||
return 0;
|
||||
}
|
||||
@@ -1,67 +0,0 @@
|
||||
#include "max_pooling.hpp"
|
||||
#include <stdexcept>
|
||||
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
MaxPooling2d::MaxPooling2d(
|
||||
shape2d inputSize,
|
||||
int nChannels,
|
||||
shape2d poolingSize,
|
||||
shape2d stride,
|
||||
shape2d padding,
|
||||
ActivationType activationType
|
||||
)
|
||||
: inputSize(inputSize),
|
||||
nChannels(nChannels),
|
||||
poolingSize(poolingSize),
|
||||
stride(stride),
|
||||
padding(padding) {
|
||||
outputSize = {
|
||||
(inputSize.first + 2 * padding.first - poolingSize.first) /
|
||||
stride.first +
|
||||
1,
|
||||
(inputSize.second + 2 * padding.second - poolingSize.second) /
|
||||
stride.second +
|
||||
1
|
||||
};
|
||||
|
||||
activation = new Activation(
|
||||
activationType, outputSize.first * outputSize.second * nChannels
|
||||
);
|
||||
|
||||
#ifdef USE_CUDA
|
||||
initCUDA();
|
||||
#endif
|
||||
}
|
||||
|
||||
MaxPooling2d::~MaxPooling2d() {
|
||||
#ifdef USE_CUDA
|
||||
delCUDA();
|
||||
#endif
|
||||
delete activation;
|
||||
}
|
||||
|
||||
float* MaxPooling2d::forwardCPU(const float* input) {
|
||||
throw std::logic_error("Not implemented");
|
||||
}
|
||||
|
||||
float* MaxPooling2d::forward(const float* input) {
|
||||
#ifdef USE_CUDA
|
||||
return forwardCUDA(input);
|
||||
#else
|
||||
return forwardCPU(input);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
int MaxPooling2d::getOutputSize() {
|
||||
return outputSize.first * outputSize.second * nChannels;
|
||||
}
|
||||
|
||||
int MaxPooling2d::getInputSize() {
|
||||
return inputSize.first * inputSize.second * nChannels;
|
||||
}
|
||||
|
||||
shape2d MaxPooling2d::getOutputDims() {
|
||||
return outputSize;
|
||||
}
|
||||
@@ -1,34 +0,0 @@
|
||||
#include "output.hpp"
|
||||
#include <stdexcept>
|
||||
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
|
||||
Output::Output(int inputSize) : inputSize(inputSize) {
|
||||
h_output = (float*) malloc(sizeof(float) * inputSize);
|
||||
}
|
||||
|
||||
Output::~Output() {
|
||||
free(h_output);
|
||||
}
|
||||
|
||||
float* Output::forwardCPU(const float* input) {
|
||||
throw std::logic_error("Not implemented");
|
||||
}
|
||||
|
||||
float* Output::forward(const float* input) {
|
||||
#ifdef USE_CUDA
|
||||
return forwardCUDA(input);
|
||||
#else
|
||||
return forwardCPU(input);
|
||||
#endif
|
||||
}
|
||||
|
||||
int Output::getOutputSize() {
|
||||
return inputSize;
|
||||
}
|
||||
|
||||
|
||||
int Output::getInputSize() {
|
||||
return inputSize;
|
||||
}
|
||||
244
src/model.cpp
Normal file
244
src/model.cpp
Normal file
@@ -0,0 +1,244 @@
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <iomanip>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
|
||||
#include "layer.hpp"
|
||||
#include "layers/batch_norm.hpp"
|
||||
|
||||
#include "model.hpp"
|
||||
|
||||
using namespace CUDANet;
|
||||
|
||||
Model::Model(
|
||||
const CUDANet::Shape input_shape,
|
||||
const CUDANet::Shape output_shape
|
||||
)
|
||||
: in_shape(input_shape),
|
||||
out_shape(out_shape),
|
||||
layers(std::vector<std::pair<std::string, Layer*>>()),
|
||||
layer_map(std::unordered_map<std::string, Layer*>()) {};
|
||||
|
||||
Model::~Model() {};
|
||||
|
||||
CUDANet::Tensor& Model::predict(CUDANet::Tensor& input) {
|
||||
CUDANet::Tensor* current = &input;
|
||||
for (const auto& [name, layer_ptr] : layers) {
|
||||
current = &(layer_ptr->forward(*current));
|
||||
}
|
||||
return *current;
|
||||
}
|
||||
|
||||
void Model::register_layer(const std::string& name, Layer* layer) {
|
||||
layers.push_back({name, layer});
|
||||
layer_map[name] = layer;
|
||||
}
|
||||
|
||||
void Model::register_module(Module& module) {
|
||||
for (const auto& [name, layer_ptr] : module.get_layers()) {
|
||||
layer_map[name] = layer_ptr;
|
||||
layers.push_back({name, layer_ptr});
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
Layer* Model::get_layer(const std::string& name) {
|
||||
return layer_map[name];
|
||||
}
|
||||
|
||||
void Model::load_weights(const std::string& path) {
|
||||
std::ifstream file(path, std::ios::binary);
|
||||
|
||||
if (!file.is_open()) {
|
||||
std::cerr << "Failed to open file: " << path << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
u_short version;
|
||||
file.read(reinterpret_cast<char*>(&version), sizeof(version));
|
||||
|
||||
if (version != 1) {
|
||||
std::cerr << "Unsupported model version: " << version << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto get_tensor_type = [](const std::string& type_str) {
|
||||
if (type_str == "weight") return TensorType::WEIGHT;
|
||||
if (type_str == "bias") return TensorType::BIAS;
|
||||
if (type_str == "running_mean") return TensorType::RUNNING_MEAN;
|
||||
if (type_str == "running_var") return TensorType::RUNNING_VAR;
|
||||
throw std::runtime_error("Unknown tensor type: " + type_str);
|
||||
};
|
||||
|
||||
u_int64_t header_size;
|
||||
file.read(reinterpret_cast<char*>(&header_size), sizeof(header_size));
|
||||
|
||||
std::string header(header_size, '\0');
|
||||
file.read(&header[0], header_size);
|
||||
|
||||
std::vector<TensorInfo> tensor_infos;
|
||||
size_t pos = 0;
|
||||
|
||||
while (pos < header.size()) {
|
||||
size_t next_pos = header.find('\n', pos);
|
||||
if (next_pos == std::string::npos) break;
|
||||
|
||||
std::string line = header.substr(pos, next_pos - pos);
|
||||
pos = next_pos + 1;
|
||||
|
||||
size_t comma_pos = line.find(',');
|
||||
if (comma_pos == std::string::npos) continue;
|
||||
|
||||
// Parse tensor name into name and type
|
||||
std::string name_str = line.substr(0, comma_pos);
|
||||
size_t dot_pos = name_str.find_last_of('.');
|
||||
if (dot_pos == std::string::npos) continue;
|
||||
std::string name = name_str.substr(0, dot_pos);
|
||||
|
||||
TensorType type = get_tensor_type(name_str.substr(dot_pos + 1));
|
||||
|
||||
line = line.substr(comma_pos + 1);
|
||||
|
||||
comma_pos = line.find(',');
|
||||
if (comma_pos == std::string::npos) continue;
|
||||
|
||||
int size = std::stoi(line.substr(0, comma_pos));
|
||||
int offset = std::stoi(line.substr(comma_pos + 1));
|
||||
|
||||
tensor_infos.push_back({name, type, size, offset});
|
||||
}
|
||||
|
||||
for (const auto& tensor_info : tensor_infos) {
|
||||
std::vector<float> values(tensor_info.size);
|
||||
|
||||
file.seekg(
|
||||
sizeof(version) + sizeof(header_size) + header.size() +
|
||||
tensor_info.offset
|
||||
);
|
||||
file.read(
|
||||
reinterpret_cast<char*>(values.data()),
|
||||
tensor_info.size * sizeof(float)
|
||||
);
|
||||
|
||||
if (layer_map.find(tensor_info.name) != layer_map.end()) {
|
||||
|
||||
Layer* layer = layer_map[tensor_info.name];
|
||||
|
||||
if (tensor_info.type == TensorType::WEIGHT) {
|
||||
if (layer->get_weights_size() != values.size()) {
|
||||
std::cerr << "Layer: " << tensor_info.name
|
||||
<< " has incorrect number of weights, expected "
|
||||
<< layer->get_weights_size() << " but got "
|
||||
<< values.size() << ", skipping" << std::endl;
|
||||
continue;
|
||||
}
|
||||
|
||||
layer->set_weights(values.data());
|
||||
} else if (tensor_info.type == TensorType::BIAS) {
|
||||
if (layer->get_biases_size() != values.size()) {
|
||||
std::cerr << "Layer: " << tensor_info.name
|
||||
<< " has incorrect number of biases, expected "
|
||||
<< layer->get_biases_size() << " but got "
|
||||
<< values.size() << ", skipping" << std::endl;
|
||||
continue;
|
||||
}
|
||||
|
||||
layer->set_biases(values.data());
|
||||
}
|
||||
|
||||
Layers::BatchNorm2d* bn_layer = dynamic_cast<Layers::BatchNorm2d*>(layer);
|
||||
if (bn_layer == nullptr) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if (tensor_info.type == TensorType::RUNNING_MEAN) {
|
||||
if (bn_layer->get_running_mean_size() != values.size()) {
|
||||
std::cerr << "Layer: " << tensor_info.name << " has incorrect number of running mean values, expected "
|
||||
<< bn_layer->get_running_mean_size() << " but got " << values.size() << ", skipping" << std::endl;
|
||||
continue;
|
||||
}
|
||||
bn_layer->set_running_mean(values.data());
|
||||
} else if (tensor_info.type == TensorType::RUNNING_VAR) {
|
||||
if (bn_layer->get_running_var_size() != values.size()) {
|
||||
std::cerr << "Layer: " << tensor_info.name << " has incorrect number of running var values, expected "
|
||||
<< bn_layer->get_running_var_size() << " but got " << values.size() << ", skipping" << std::endl;
|
||||
continue;
|
||||
}
|
||||
bn_layer->set_running_var(values.data());
|
||||
}
|
||||
|
||||
|
||||
} else {
|
||||
std::cerr << "Layer: " << tensor_info.name
|
||||
<< " does not exist, skipping" << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
file.close();
|
||||
}
|
||||
|
||||
bool Model::validate() {
|
||||
bool valid = true;
|
||||
CUDANet::Shape shape = in_shape;
|
||||
|
||||
for (const auto& [name, layer_ptr] : layers) {
|
||||
if (layer_ptr->input_shape() != shape) {
|
||||
valid = false;
|
||||
std::cerr << "Layer: " << name
|
||||
<< " has incorrect input shape, expected " << format_shape(shape)
|
||||
<< " but got " << format_shape(layer_ptr->input_shape())
|
||||
<< std::endl;
|
||||
break;
|
||||
}
|
||||
|
||||
shape = layer_ptr->output_shape();
|
||||
}
|
||||
|
||||
return valid;
|
||||
}
|
||||
|
||||
void Model::print_summary() {
|
||||
struct layer_info {
|
||||
std::string name;
|
||||
std::string input_shape;
|
||||
std::string output_shape;
|
||||
};
|
||||
|
||||
std::vector<layer_info> layer_infos;
|
||||
|
||||
int max_name_length = 0;
|
||||
int max_input_length = 0;
|
||||
int max_output_length = 0;
|
||||
|
||||
for (const auto& [name, layer_ptr] : layers) {
|
||||
layer_info li = {
|
||||
name, format_shape(layer_ptr->input_shape()),
|
||||
format_shape(layer_ptr->output_shape())
|
||||
};
|
||||
layer_infos.push_back(li);
|
||||
|
||||
max_name_length = std::max(max_name_length, (int)li.name.size());
|
||||
max_input_length =
|
||||
std::max(max_input_length, (int)li.input_shape.size());
|
||||
max_output_length =
|
||||
std::max(max_output_length, (int)li.output_shape.size());
|
||||
}
|
||||
|
||||
int row_length = max_name_length + max_input_length + max_output_length + 6;
|
||||
|
||||
std::cout << "Model Summary:" << std::endl
|
||||
<< std::string(row_length, '-') << std::endl;
|
||||
|
||||
for (const auto& li : layer_infos) {
|
||||
std::cout << std::left
|
||||
<< std::setw(max_name_length) << li.name
|
||||
<< " | " << std::right
|
||||
<< std::setw(max_input_length) << li.input_shape
|
||||
<< " | "
|
||||
<< std::setw(max_output_length) << li.output_shape
|
||||
<< std::endl;
|
||||
}
|
||||
}
|
||||
@@ -1,277 +0,0 @@
|
||||
#include "model.hpp"
|
||||
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <iomanip>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
|
||||
#include "input.hpp"
|
||||
#include "layer.hpp"
|
||||
#include "batch_norm.hpp"
|
||||
|
||||
using namespace CUDANet;
|
||||
|
||||
Model::Model(
|
||||
const shape2d inputSize,
|
||||
const int inputChannels,
|
||||
const int outputSize
|
||||
)
|
||||
: inputSize(inputSize),
|
||||
inputChannels(inputChannels),
|
||||
outputSize(outputSize),
|
||||
layers(std::vector<std::pair<std::string, Layers::SequentialLayer*>>()),
|
||||
layerMap(std::unordered_map<std::string, Layers::SequentialLayer*>()) {
|
||||
inputLayer =
|
||||
new Layers::Input(inputSize.first * inputSize.second * inputChannels);
|
||||
outputLayer = new Layers::Output(outputSize);
|
||||
};
|
||||
|
||||
Model::Model(const Model& other)
|
||||
: inputSize(other.inputSize),
|
||||
inputChannels(other.inputChannels),
|
||||
outputSize(other.outputSize),
|
||||
layers(std::vector<std::pair<std::string, Layers::SequentialLayer*>>()),
|
||||
layerMap(std::unordered_map<std::string, Layers::SequentialLayer*>()) {
|
||||
inputLayer = new Layers::Input(*other.inputLayer);
|
||||
outputLayer = new Layers::Output(*other.outputLayer);
|
||||
}
|
||||
|
||||
Model::~Model() {
|
||||
delete inputLayer;
|
||||
delete outputLayer;
|
||||
for (const auto& layer : layers) {
|
||||
delete layer.second;
|
||||
}
|
||||
};
|
||||
|
||||
float* Model::predict(const float* input) {
|
||||
float* d_input = inputLayer->forward(input);
|
||||
|
||||
for (auto& layer : layers) {
|
||||
d_input = layer.second->forward(d_input);
|
||||
}
|
||||
|
||||
return outputLayer->forward(d_input);
|
||||
}
|
||||
|
||||
void Model::addLayer(const std::string& name, Layers::SequentialLayer* layer) {
|
||||
const Module* module = dynamic_cast<Module*>(layer);
|
||||
|
||||
if (module != nullptr) {
|
||||
for (const auto& moduleLayer : module->getLayers()) {
|
||||
layerMap[moduleLayer.first] = moduleLayer.second;
|
||||
layers.push_back({moduleLayer.first, moduleLayer.second});
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
layers.push_back({name, layer});
|
||||
layerMap[name] = layer;
|
||||
}
|
||||
|
||||
Layers::SequentialLayer* Model::getLayer(const std::string& name) {
|
||||
return layerMap[name];
|
||||
}
|
||||
|
||||
void Model::loadWeights(const std::string& path) {
|
||||
std::ifstream file(path, std::ios::binary);
|
||||
|
||||
if (!file.is_open()) {
|
||||
std::cerr << "Failed to open file: " << path << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
u_short version;
|
||||
file.read(reinterpret_cast<char*>(&version), sizeof(version));
|
||||
|
||||
if (version != 1) {
|
||||
std::cerr << "Unsupported model version: " << version << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto getTensorType = [](const std::string& typeStr) {
|
||||
if (typeStr == "weight") return TensorType::WEIGHT;
|
||||
if (typeStr == "bias") return TensorType::BIAS;
|
||||
if (typeStr == "running_mean") return TensorType::RUNNING_MEAN;
|
||||
if (typeStr == "running_var") return TensorType::RUNNING_VAR;
|
||||
throw std::runtime_error("Unknown tensor type: " + typeStr);
|
||||
};
|
||||
|
||||
u_int64_t headerSize;
|
||||
file.read(reinterpret_cast<char*>(&headerSize), sizeof(headerSize));
|
||||
|
||||
std::string header(headerSize, '\0');
|
||||
file.read(&header[0], headerSize);
|
||||
|
||||
std::vector<TensorInfo> tensorInfos;
|
||||
size_t pos = 0;
|
||||
|
||||
while (pos < header.size()) {
|
||||
size_t nextPos = header.find('\n', pos);
|
||||
if (nextPos == std::string::npos) break;
|
||||
|
||||
std::string line = header.substr(pos, nextPos - pos);
|
||||
pos = nextPos + 1;
|
||||
|
||||
size_t commaPos = line.find(',');
|
||||
if (commaPos == std::string::npos) continue;
|
||||
|
||||
// Parse tensor name into name and type
|
||||
std::string nameStr = line.substr(0, commaPos);
|
||||
size_t dotPos = nameStr.find_last_of('.');
|
||||
if (dotPos == std::string::npos) continue;
|
||||
std::string name = nameStr.substr(0, dotPos);
|
||||
|
||||
TensorType type = getTensorType(nameStr.substr(dotPos + 1));
|
||||
|
||||
line = line.substr(commaPos + 1);
|
||||
|
||||
commaPos = line.find(',');
|
||||
if (commaPos == std::string::npos) continue;
|
||||
|
||||
int size = std::stoi(line.substr(0, commaPos));
|
||||
int offset = std::stoi(line.substr(commaPos + 1));
|
||||
|
||||
tensorInfos.push_back({name, type, size, offset});
|
||||
}
|
||||
|
||||
for (const auto& tensorInfo : tensorInfos) {
|
||||
std::vector<float> values(tensorInfo.size);
|
||||
|
||||
file.seekg(
|
||||
sizeof(version) + sizeof(headerSize) + header.size() +
|
||||
tensorInfo.offset
|
||||
);
|
||||
file.read(
|
||||
reinterpret_cast<char*>(values.data()),
|
||||
tensorInfo.size * sizeof(float)
|
||||
);
|
||||
|
||||
if (layerMap.find(tensorInfo.name) != layerMap.end()) {
|
||||
Layers::WeightedLayer* wLayer =
|
||||
dynamic_cast<Layers::WeightedLayer*>(layerMap[tensorInfo.name]);
|
||||
|
||||
if (wLayer == nullptr) {
|
||||
std::cerr << "Layer: " << tensorInfo.name
|
||||
<< " does not have weights" << std::endl;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (tensorInfo.type == TensorType::WEIGHT) {
|
||||
if (wLayer->getWeights().size() != values.size()) {
|
||||
std::cerr << "Layer: " << tensorInfo.name
|
||||
<< " has incorrect number of weights, expected "
|
||||
<< wLayer->getWeights().size() << " but got "
|
||||
<< values.size() << ", skipping" << std::endl;
|
||||
continue;
|
||||
}
|
||||
|
||||
wLayer->setWeights(values.data());
|
||||
} else if (tensorInfo.type == TensorType::BIAS) {
|
||||
if (wLayer->getBiases().size() != values.size()) {
|
||||
std::cerr << "Layer: " << tensorInfo.name
|
||||
<< " has incorrect number of biases, expected "
|
||||
<< wLayer->getBiases().size() << " but got "
|
||||
<< values.size() << ", skipping" << std::endl;
|
||||
continue;
|
||||
}
|
||||
|
||||
wLayer->setBiases(values.data());
|
||||
}
|
||||
|
||||
Layers::BatchNorm2d* bnLayer = dynamic_cast<Layers::BatchNorm2d*>(wLayer);
|
||||
if (bnLayer == nullptr) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if (tensorInfo.type == TensorType::RUNNING_MEAN) {
|
||||
if (bnLayer->getRunningMean().size() != values.size()) {
|
||||
std::cerr << "Layer: " << tensorInfo.name << " has incorrect number of running mean values, expected "
|
||||
<< bnLayer->getRunningMean().size() << " but got " << values.size() << ", skipping" << std::endl;
|
||||
continue;
|
||||
}
|
||||
bnLayer->setRunningMean(values.data());
|
||||
} else if (tensorInfo.type == TensorType::RUNNING_VAR) {
|
||||
if (bnLayer->getRunningVar().size() != values.size()) {
|
||||
std::cerr << "Layer: " << tensorInfo.name << " has incorrect number of running var values, expected "
|
||||
<< bnLayer->getRunningVar().size() << " but got " << values.size() << ", skipping" << std::endl;
|
||||
continue;
|
||||
}
|
||||
bnLayer->setRunningVar(values.data());
|
||||
}
|
||||
|
||||
|
||||
} else {
|
||||
std::cerr << "Layer: " << tensorInfo.name
|
||||
<< " does not exist, skipping" << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
file.close();
|
||||
}
|
||||
|
||||
bool Model::validate() {
|
||||
bool valid = true;
|
||||
int size = inputLayer->getInputSize();
|
||||
|
||||
for (const auto& layer : layers) {
|
||||
if (layer.second->getInputSize() != size) {
|
||||
valid = false;
|
||||
std::cerr << "Layer: " << layer.first
|
||||
<< " has incorrect input size, expected " << size
|
||||
<< " but got " << layer.second->getInputSize()
|
||||
<< std::endl;
|
||||
break;
|
||||
}
|
||||
|
||||
size = layer.second->getOutputSize();
|
||||
}
|
||||
|
||||
return valid;
|
||||
}
|
||||
|
||||
void Model::printSummary() {
|
||||
struct layer_info {
|
||||
std::string name;
|
||||
std::string inputSize;
|
||||
std::string outputSize;
|
||||
};
|
||||
|
||||
std::vector<layer_info> layerInfos;
|
||||
|
||||
int maxNameLength = 0;
|
||||
int maxInputLength = 0;
|
||||
int maxOutputLength = 0;
|
||||
|
||||
for (const auto& layer : layers) {
|
||||
layer_info layerInfo = {
|
||||
layer.first, std::to_string(layer.second->getInputSize()),
|
||||
std::to_string(layer.second->getOutputSize())
|
||||
};
|
||||
layerInfos.push_back(layerInfo);
|
||||
|
||||
maxNameLength = std::max(maxNameLength, (int)layerInfo.name.size());
|
||||
maxInputLength =
|
||||
std::max(maxInputLength, (int)layerInfo.inputSize.size());
|
||||
maxOutputLength =
|
||||
std::max(maxOutputLength, (int)layerInfo.outputSize.size());
|
||||
}
|
||||
|
||||
int rowLength = maxNameLength + maxInputLength + maxOutputLength + 6;
|
||||
|
||||
std::cout << "Model Summary:" << std::endl
|
||||
<< std::string(rowLength, '-') << std::endl;
|
||||
|
||||
for (const auto& layerInfo : layerInfos) {
|
||||
std::cout << std::left
|
||||
<< std::setw(maxNameLength) << layerInfo.name
|
||||
<< " | " << std::right
|
||||
<< std::setw(maxInputLength) << layerInfo.inputSize
|
||||
<< " | "
|
||||
<< std::setw(maxOutputLength) << layerInfo.outputSize
|
||||
<< std::endl;
|
||||
}
|
||||
}
|
||||
@@ -1,32 +0,0 @@
|
||||
#include "module.hpp"
|
||||
|
||||
#include <algorithm>
|
||||
|
||||
using namespace CUDANet;
|
||||
|
||||
void Module::addLayer(const std::string& name, Layers::SequentialLayer* layer) {
|
||||
const Module* module = dynamic_cast<Module*>(layer);
|
||||
|
||||
if (module != nullptr) {
|
||||
for (const auto& moduleLayer : module->getLayers()) {
|
||||
layers.push_back({moduleLayer.first, moduleLayer.second});
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
layers.push_back({name, layer});
|
||||
}
|
||||
|
||||
const std::vector<std::pair<std::string, Layers::SequentialLayer*>>&
|
||||
Module::getLayers() const {
|
||||
return layers;
|
||||
}
|
||||
|
||||
int Module::getInputSize() {
|
||||
return inputSize;
|
||||
}
|
||||
|
||||
int Module::getOutputSize() {
|
||||
return outputSize;
|
||||
}
|
||||
28
src/module.cpp
Normal file
28
src/module.cpp
Normal file
@@ -0,0 +1,28 @@
|
||||
#include <algorithm>
|
||||
|
||||
#include "module.hpp"
|
||||
|
||||
using namespace CUDANet;
|
||||
|
||||
CUDANet::Shape Module::input_shape() {
|
||||
return in_shape;
|
||||
}
|
||||
|
||||
CUDANet::Shape Module::output_shape() {
|
||||
return out_shape;
|
||||
}
|
||||
|
||||
void Module::register_layer(const std::string& name, Layer* layer) {
|
||||
layers.push_back({name, layer});
|
||||
}
|
||||
|
||||
void Module::register_module(Module& module) {
|
||||
for (const auto& moduleLayer : module.get_layers()) {
|
||||
layers.push_back({moduleLayer.first, moduleLayer.second});
|
||||
}
|
||||
}
|
||||
|
||||
const std::vector<std::pair<std::string, Layer*>>&
|
||||
Module::get_layers() const {
|
||||
return layers;
|
||||
}
|
||||
126
src/tensor.cpp
Normal file
126
src/tensor.cpp
Normal file
@@ -0,0 +1,126 @@
|
||||
#include <stdexcept>
|
||||
|
||||
#include "tensor.hpp"
|
||||
|
||||
using namespace CUDANet;
|
||||
|
||||
size_t dtype_size(DType dtype) {
|
||||
switch (dtype)
|
||||
{
|
||||
case DType::FLOAT32:
|
||||
return 4;
|
||||
break;
|
||||
|
||||
default:
|
||||
throw std::runtime_error("Unknown DType");
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
Tensor::Tensor(Shape shape, CUDANet::Backend* backend)
|
||||
: Tensor(shape, backend->get_default_dtype(), backend) {}
|
||||
|
||||
Tensor::Tensor(Shape shape, DType dtype, Backend* backend)
|
||||
: shape(shape), dtype(dtype), backend(backend), d_ptr(nullptr) {
|
||||
if (shape.empty()) {
|
||||
throw std::runtime_error("Tensor shape cannot be empty");
|
||||
}
|
||||
|
||||
// Check if backend supports DType
|
||||
if (!backend->supports_dtype(dtype)) {
|
||||
throw std::runtime_error("Unsupported DType");
|
||||
}
|
||||
|
||||
// Count total elements
|
||||
size_t count = 1;
|
||||
for (size_t i = 0; i < shape.size(); ++i) {
|
||||
count *= shape[i];
|
||||
}
|
||||
total_elms = count;
|
||||
|
||||
// Compute total size (bytes)
|
||||
size_t type_size = 0;
|
||||
switch (dtype) {
|
||||
case DType::FLOAT32:
|
||||
type_size = 4;
|
||||
break;
|
||||
default:
|
||||
throw std::runtime_error("Unsupported data type");
|
||||
}
|
||||
total_size = total_elms * type_size;
|
||||
|
||||
// Allocate memory on backend
|
||||
d_ptr = backend->allocate(total_size);
|
||||
}
|
||||
|
||||
Tensor::Tensor(Tensor&& other) noexcept
|
||||
: shape(std::move(other.shape)),
|
||||
dtype(other.dtype),
|
||||
total_elms(other.total_elms),
|
||||
total_size(other.total_size),
|
||||
backend(other.backend),
|
||||
d_ptr(other.d_ptr) {
|
||||
other.d_ptr = nullptr;
|
||||
other.backend = nullptr;
|
||||
}
|
||||
|
||||
Tensor& Tensor::operator=(Tensor&& other) noexcept {
|
||||
if (this != &other) {
|
||||
// Clean up our current resources
|
||||
if (d_ptr != nullptr && backend != nullptr) {
|
||||
backend->deallocate(d_ptr);
|
||||
}
|
||||
|
||||
// Steal other's resources
|
||||
shape = std::move(other.shape);
|
||||
dtype = other.dtype;
|
||||
total_elms = other.total_elms;
|
||||
total_size = other.total_size;
|
||||
backend = other.backend;
|
||||
d_ptr = other.d_ptr;
|
||||
|
||||
// Leave other in valid but empty state
|
||||
other.d_ptr = nullptr;
|
||||
other.backend = nullptr;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
Tensor::~Tensor() {
|
||||
if (backend && d_ptr) {
|
||||
backend->deallocate(d_ptr);
|
||||
d_ptr = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
DType Tensor::get_dtype() const {
|
||||
return dtype;
|
||||
}
|
||||
|
||||
size_t Tensor::numel() const {
|
||||
return total_elms;
|
||||
}
|
||||
|
||||
size_t Tensor::size() const {
|
||||
return total_size;
|
||||
}
|
||||
|
||||
void* Tensor::device_ptr() const {
|
||||
return d_ptr;
|
||||
}
|
||||
|
||||
void* Tensor::device_ptr() {
|
||||
return d_ptr;
|
||||
}
|
||||
|
||||
void Tensor::zero() {
|
||||
backend->zero(*this);
|
||||
}
|
||||
|
||||
void Tensor::fill(int value) {
|
||||
backend->fill(*this, value);
|
||||
}
|
||||
|
||||
void Tensor::set_data(void *data) {
|
||||
backend->copy_to_device(*this, data, total_size);
|
||||
}
|
||||
@@ -54,7 +54,7 @@ class AvgPoolingLayerTest : public ::testing::Test {
|
||||
|
||||
d_output = avgPoolingLayer->forward(d_input);
|
||||
|
||||
int outputSize = avgPoolingLayer->getOutputSize();
|
||||
int outputSize = avgPoolingLayer->get_output_size();
|
||||
|
||||
std::vector<float> output(outputSize);
|
||||
cudaStatus = cudaMemcpy(
|
||||
@@ -229,7 +229,7 @@ class AdaptiveAvgPoolingLayerTest : public ::testing::Test {
|
||||
|
||||
d_output = adaptiveAvgPoolingLayer->forward(d_input);
|
||||
|
||||
int outputSize = adaptiveAvgPoolingLayer->getOutputSize();
|
||||
int outputSize = adaptiveAvgPoolingLayer->get_output_size();
|
||||
|
||||
std::vector<float> output(outputSize);
|
||||
cudaStatus = cudaMemcpy(
|
||||
|
||||
@@ -52,7 +52,7 @@ class MaxPoolingLayerTest : public ::testing::Test {
|
||||
|
||||
d_output = maxPoolingLayer->forward(d_input);
|
||||
|
||||
int outputSize = maxPoolingLayer->getOutputSize();
|
||||
int outputSize = maxPoolingLayer->get_output_size();
|
||||
|
||||
std::vector<float> output(outputSize);
|
||||
cudaStatus = cudaMemcpy(
|
||||
|
||||
Reference in New Issue
Block a user