mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-12-22 06:14:22 +00:00
Add avgPool2d implementation
This commit is contained in:
@@ -62,6 +62,16 @@ class Backend {
|
||||
CUDANet::Shape padding_shape,
|
||||
CUDANet::Shape output_shape
|
||||
) = 0;
|
||||
|
||||
virtual CUDANet::Tensor& avgPool2d(
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
CUDANet::Shape input_shape,
|
||||
CUDANet::Shape pool_shape,
|
||||
CUDANet::Shape stride_shape,
|
||||
CUDANet::Shape padding_shape,
|
||||
CUDANet::Shape output_shape
|
||||
) = 0;
|
||||
};
|
||||
|
||||
} // namespace CUDANet
|
||||
@@ -49,7 +49,7 @@ class CUDA : public Backend {
|
||||
const CUDANet::Shape out_shape
|
||||
) override;
|
||||
|
||||
CUDANet::Tensor& CUDA::maxPool2d(
|
||||
CUDANet::Tensor& maxPool2d(
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
CUDANet::Shape input_shape,
|
||||
@@ -58,6 +58,16 @@ class CUDA : public Backend {
|
||||
CUDANet::Shape padding_shape,
|
||||
CUDANet::Shape output_shape
|
||||
) override;
|
||||
|
||||
CUDANet::Tensor& avgPool2d(
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
CUDANet::Shape input_shape,
|
||||
CUDANet::Shape pool_shape,
|
||||
CUDANet::Shape stride_shape,
|
||||
CUDANet::Shape padding_shape,
|
||||
CUDANet::Shape output_shape
|
||||
) = 0;
|
||||
};
|
||||
|
||||
} // namespace CUDANet::Backend
|
||||
@@ -1,6 +1,6 @@
|
||||
#include "cuda_helper.cuh"
|
||||
#include "layer.hpp"
|
||||
#include "pooling.cuh"
|
||||
#include "pool.cuh"
|
||||
|
||||
using namespace CUDANet;
|
||||
|
||||
@@ -135,5 +135,31 @@ CUDANet::Tensor& CUDA::maxPool2d(
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
|
||||
return output;
|
||||
}
|
||||
|
||||
CUDANet::Tensor& CUDA::avgPool2d(
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
CUDANet::Shape input_shape,
|
||||
CUDANet::Shape pool_shape,
|
||||
CUDANet::Shape stride_shape,
|
||||
CUDANet::Shape padding_shape,
|
||||
CUDANet::Shape output_shape
|
||||
) {
|
||||
dim3 block(8, 8, 8);
|
||||
dim3 grid(
|
||||
(output_shape[0] + block.x - 1) / block.x,
|
||||
(output_shape[1] + block.y - 1) / block.y,
|
||||
(output_shape[2] + block.z - 1) / block.z
|
||||
);
|
||||
|
||||
Kernels::avg_pool<<<grid, block>>>(
|
||||
input.data<float>(), output.data<float>(), input_shape, output_shape, pool_shape,
|
||||
stride_shape, padding_shape
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
|
||||
return output;
|
||||
}
|
||||
@@ -1,45 +0,0 @@
|
||||
#include "avg_pooling.hpp"
|
||||
#include "cuda_helper.cuh"
|
||||
#include "pooling.cuh"
|
||||
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
void AvgPooling2d::initCUDA() {
|
||||
d_output = nullptr;
|
||||
CUDA_CHECK(cudaMalloc(
|
||||
(void**)&d_output,
|
||||
sizeof(float) * outputSize.first * outputSize.second * nChannels
|
||||
));
|
||||
}
|
||||
|
||||
void AvgPooling2d::delCUDA() {
|
||||
cudaFree(d_output);
|
||||
}
|
||||
|
||||
float* AvgPooling2d::forwardCUDA(const float* d_input) {
|
||||
dim3 block(8, 8, 8);
|
||||
dim3 grid(
|
||||
(outputSize.first + block.x - 1) / block.x,
|
||||
(outputSize.second + block.y - 1) / block.y,
|
||||
(nChannels + block.z - 1) / block.z
|
||||
);
|
||||
|
||||
Kernels::avg_pooling<<<grid, block>>>(
|
||||
d_input, d_output, inputSize, outputSize, nChannels, poolingSize,
|
||||
stride, padding
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
activation->activate(d_output);
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
|
||||
return d_output;
|
||||
}
|
||||
|
||||
void AdaptiveAvgPooling2d::initCUDA() {
|
||||
cudaFree(d_output);
|
||||
cudaMalloc(
|
||||
(void**)&d_output,
|
||||
sizeof(float) * outputSize.first * outputSize.second * nChannels
|
||||
);
|
||||
}
|
||||
@@ -49,23 +49,43 @@ AvgPool2d::AvgPool2d(
|
||||
|
||||
AvgPool2d::~AvgPool2d() {}
|
||||
|
||||
CUDANet::Tensor& AvgPool2d::forward(CUDANet::Tensor& input);
|
||||
CUDANet::Tensor& AvgPool2d::forward(CUDANet::Tensor& input) {
|
||||
output.zero();
|
||||
backend->avgPool2d(
|
||||
input,
|
||||
output,
|
||||
in_shape,
|
||||
pool_shape,
|
||||
stride_shape,
|
||||
padding_shape,
|
||||
out_shape
|
||||
);
|
||||
return output;
|
||||
}
|
||||
|
||||
CUDANet::Shape AvgPool2d::input_shape();
|
||||
CUDANet::Shape AvgPool2d::input_shape() {
|
||||
return in_shape;
|
||||
}
|
||||
|
||||
CUDANet::Shape AvgPool2d::output_shape();
|
||||
CUDANet::Shape AvgPool2d::output_shape() {
|
||||
return out_shape;
|
||||
}
|
||||
|
||||
size_t AvgPool2d::input_size();
|
||||
size_t AvgPool2d::input_size() {
|
||||
return sizeof(float) * in_shape[0] * in_shape[1] * in_shape[2];
|
||||
}
|
||||
|
||||
size_t AvgPool2d::output_size();
|
||||
size_t AvgPool2d::output_size() {
|
||||
return sizeof(float) * out_shape[0] * out_shape[1] * out_shape[3];
|
||||
}
|
||||
|
||||
void AvgPool2d::set_weights(void* input);
|
||||
void AvgPool2d::set_weights(void* input) {}
|
||||
|
||||
CUDANet::Tensor& AvgPool2d::get_weights();
|
||||
CUDANet::Tensor& AvgPool2d::get_weights() {}
|
||||
|
||||
void AvgPool2d::set_biases(void* input);
|
||||
void AvgPool2d::set_biases(void* input) {}
|
||||
|
||||
CUDANet::Tensor& AvgPool2d::get_biases();
|
||||
CUDANet::Tensor& AvgPool2d::get_biases() {}
|
||||
|
||||
|
||||
AdaptiveAvgPool2d::AdaptiveAvgPool2d(
|
||||
@@ -73,15 +93,29 @@ AdaptiveAvgPool2d::AdaptiveAvgPool2d(
|
||||
CUDANet::Shape output_shape,
|
||||
CUDANet::Backend *backend
|
||||
)
|
||||
: AvgPool2d(input_shape, {1, 1}, {1, 1}, {0, 0}, backend) {
|
||||
stride_shape = {
|
||||
input_shape[0] / output_shape[0],
|
||||
input_shape[1] / output_shape[1]
|
||||
};
|
||||
pool_shape = {
|
||||
input_shape[0] - (output_shape[0] - 1) * stride_shape[0],
|
||||
input_shape[1] - (output_shape[1] - 1) * stride_shape[1]
|
||||
};
|
||||
padding_shape = {(pool_shape[0] - 1) / 2, (pool_shape[1] - 1) / 2};
|
||||
: AvgPool2d(
|
||||
input_shape,
|
||||
// pool_shape
|
||||
{
|
||||
input_shape[0] - (output_shape[0] - 1) * (input_shape[0] / output_shape[0]),
|
||||
input_shape[1] - (output_shape[1] - 1) * (input_shape[1] / output_shape[1])
|
||||
},
|
||||
// stride_shape
|
||||
{
|
||||
input_shape[0] / output_shape[0],
|
||||
input_shape[1] / output_shape[1]
|
||||
},
|
||||
// padding_shape
|
||||
{
|
||||
(input_shape[0] - (output_shape[0] - 1) * (input_shape[0] / output_shape[0]) - 1) / 2,
|
||||
(input_shape[1] - (output_shape[1] - 1) * (input_shape[1] / output_shape[1]) - 1) / 2
|
||||
},
|
||||
backend
|
||||
) {
|
||||
out_shape = output_shape;
|
||||
}
|
||||
|
||||
output = CUDANet::Tensor(
|
||||
Shape{out_shape[0] * out_shape[1] * out_shape[2]},
|
||||
CUDANet::DType::FLOAT32, backend
|
||||
);
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user