Files
CUDANet/src/layers/avg_pooling.cpp

147 lines
3.6 KiB
C++

#include <format>
#include <stdexcept>
#include "layers/avg_pool.hpp"
using namespace CUDANet::Layers;
AvgPool2d::AvgPool2d(
CUDANet::Shape input_shape,
CUDANet::Shape pool_shape,
CUDANet::Shape stride_shape,
CUDANet::Shape padding_shape,
CUDANet::Backend* backend
)
: AvgPool2d(input_shape, pool_shape, stride_shape, padding_shape, backend->get_default_dtype(), backend) {}
AvgPool2d::AvgPool2d(
CUDANet::Shape input_shape,
CUDANet::Shape pool_shape,
CUDANet::Shape stride_shape,
CUDANet::Shape padding_shape,
CUDANet::DType dtype,
CUDANet::Backend* backend
)
: in_shape(input_shape),
pool_shape(pool_shape),
stride_shape(stride_shape),
padding_shape(padding_shape),
backend(backend) {
if (in_shape.size() != 3) {
throw InvalidShapeException("input", 3, in_shape.size());
}
if (pool_shape.size() != 2) {
throw InvalidShapeException("pool", 2, pool_shape.size());
}
if (stride_shape.size() != 2) {
throw InvalidShapeException("stride", 2, stride_shape.size());
}
if (padding_shape.size() != 2) {
throw InvalidShapeException("padding", 2, padding_shape.size());
}
this->dtype = dtype;
out_shape = {
(in_shape[0] + 2 * padding_shape[0] - pool_shape[0]) / stride_shape[0] +
1,
(in_shape[1] + 2 * padding_shape[1] - pool_shape[1]) / stride_shape[1] +
1,
in_shape[2]
};
output = CUDANet::Tensor(
Shape{out_shape[0] * out_shape[1] * out_shape[2]},
dtype, backend
);
}
AvgPool2d::~AvgPool2d() {}
CUDANet::Tensor& AvgPool2d::forward(CUDANet::Tensor& input) {
output.zero();
backend->avg_pool2d(
input,
output,
in_shape,
pool_shape,
stride_shape,
padding_shape,
out_shape
);
return output;
}
CUDANet::Shape AvgPool2d::input_shape() {
return in_shape;
}
CUDANet::Shape AvgPool2d::output_shape() {
return out_shape;
}
size_t AvgPool2d::input_size() {
return dtype_size(dtype) * in_shape[0] * in_shape[1] * in_shape[2];
}
size_t AvgPool2d::output_size() {
return dtype_size(dtype) * out_shape[0] * out_shape[1] * out_shape[2];
}
void AvgPool2d::set_weights(void* input) {}
size_t AvgPool2d::get_weights_size() {
return 0;
}
void AvgPool2d::set_biases(void* input) {}
size_t AvgPool2d::get_biases_size() {
return 0;
}
AdaptiveAvgPool2d::AdaptiveAvgPool2d(
CUDANet::Shape input_shape,
CUDANet::Shape output_shape,
CUDANet::Backend *backend
)
: AdaptiveAvgPool2d(input_shape, output_shape, backend->get_default_dtype(), backend) {}
AdaptiveAvgPool2d::AdaptiveAvgPool2d(
CUDANet::Shape input_shape,
CUDANet::Shape output_shape,
CUDANet::DType dtype,
CUDANet::Backend *backend
)
: AvgPool2d(
input_shape,
// pool_shape
{
input_shape[0] - (output_shape[0] - 1) * (input_shape[0] / output_shape[0]),
input_shape[1] - (output_shape[1] - 1) * (input_shape[1] / output_shape[1])
},
// stride_shape
{
input_shape[0] / output_shape[0],
input_shape[1] / output_shape[1]
},
// padding_shape
{
(input_shape[0] - (output_shape[0] - 1) * (input_shape[0] / output_shape[0]) - 1) / 2,
(input_shape[1] - (output_shape[1] - 1) * (input_shape[1] / output_shape[1]) - 1) / 2
},
dtype,
backend
) {
out_shape = output_shape;
output = CUDANet::Tensor(
Shape{out_shape[0] * out_shape[1] * out_shape[2]},
dtype, backend
);
}