Compare commits

...

18 Commits

Author SHA1 Message Date
6318d52f12 Use const T* for input tensors in layer and tensor operations 2025-11-28 21:41:38 +01:00
71dc5a924d Move dtype size implementation to cpp file 2025-11-27 23:29:54 +01:00
7e27c87673 Fix compilation errors and warnings 2025-11-27 22:41:49 +01:00
e79667671a Refactor size calculations in layers and backend 2025-11-27 22:01:09 +01:00
c855ae89ec Refactor Tensor methods to use void* for data handling and add device_ptr method 2025-11-27 21:18:51 +01:00
9ff214d759 Refactor CUDA kernels and tensor operations for type generality 2025-11-26 20:47:55 +01:00
13d3d38b68 Add dtype parameter to layer constructors 2025-11-26 00:19:33 +01:00
84153ac49c Add default dtype to backend 2025-11-25 23:42:19 +01:00
ad079560ff Update CMakeLists.txt 2025-11-25 19:08:55 +01:00
60964cf294 Move factory implementation out of header 2025-11-24 22:01:54 +01:00
a40ba96d4f Implement backend factory 2025-11-24 21:53:47 +01:00
a97ff8e1f6 Update main include file 2025-11-23 21:07:34 +01:00
38cb0c9ac0 Restructure include paths 2025-11-23 20:57:08 +01:00
4161caf3e1 Update BatchNorm2d to return sizes for running mean and var 2025-11-23 20:48:41 +01:00
9f1a56c699 Refactor Layer interface to return size of weights and biases instead of Tensor references 2025-11-23 20:44:25 +01:00
547cd0c224 Remove unnecessary inclusion of cuda_helper.cuh in pool.cu 2025-11-23 19:21:22 +01:00
1102aef293 Implement custom Shape struct with __device__ support 2025-11-23 19:21:06 +01:00
82a0e7c19d Fix some compilation errors 2025-11-23 18:50:57 +01:00
47 changed files with 1600 additions and 740 deletions

View File

@@ -23,8 +23,8 @@ endif()
file(GLOB_RECURSE CPU_SOURCES
src/*.cpp
src/layers/*.cpp
src/model/*.cpp
)
set(LIBRARY_SOURCES ${CPU_SOURCES})
@@ -32,10 +32,7 @@ set(LIBRARY_SOURCES ${CPU_SOURCES})
if(USE_CUDA)
file(GLOB_RECURSE CUDA_SOURCES
src/backends/cuda/*.cu
src/backends/cuda/utils/*.cu
src/backends/cuda/kernels/*.cu
src/backends/cuda/layers/*.cu
src/layers/*.cu # To be removed
)
set(LIBRARY_SOURCES ${LIBRARY_SOURCES} ${CUDA_SOURCES})
endif()
@@ -46,17 +43,17 @@ set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
add_library(${PROJECT_NAME} STATIC ${LIBRARY_SOURCES})
if(USE_CUDA)
# Enable relocatable device code for proper template instantiation across translation units
set_target_properties(${PROJECT_NAME} PROPERTIES
CUDA_SEPARABLE_COMPILATION ON
CUDA_RUNTIME_LIBRARY Shared
)
target_link_libraries(${PROJECT_NAME} CUDA::cudart)
endif()
# Set include directories for the library
target_include_directories(${PROJECT_NAME} PUBLIC
${CMAKE_CURRENT_SOURCE_DIR}/include
${CMAKE_CURRENT_SOURCE_DIR}/include/utils
${CMAKE_CURRENT_SOURCE_DIR}/include/kernels
${CMAKE_CURRENT_SOURCE_DIR}/include/layers
${CMAKE_CURRENT_SOURCE_DIR}/include/model
${CMAKE_CURRENT_SOURCE_DIR}/src
)
set_property(TARGET ${PROJECT_NAME} PROPERTY CXX_STANDARD 20)

View File

@@ -1,14 +1,39 @@
#pragma once
#include <cstddef>
#include <memory>
#include <optional>
#include "shape.hpp"
#include "tensor.hpp"
namespace CUDANet {
// Forward declaration
// Forward declarations
class Backend;
class Tensor;
enum class DType;
enum BackendType { CUDA_BACKEND, CPU_BACKEND };
struct BackendConfig {
int device_id = 0;
};
class BackendFactory {
public:
static std::unique_ptr<Backend> create(BackendType backend_type, const BackendConfig& config);
};
class Backend {
protected:
std::optional<DType> default_dtype;
public:
// Dtypes
virtual bool supports_dtype(DType dtype) const = 0;
virtual void set_default_dtype(DType dtype) = 0;
virtual DType get_default_dtype() const = 0;
// Memory management
virtual void* allocate(size_t bytes) = 0;
virtual void deallocate(void* ptr) = 0;

View File

@@ -3,7 +3,7 @@
#include "backend.hpp"
#include "tensor.hpp"
namespace CUDANet::Backend {
namespace CUDANet::Backends {
class CPU : public Backend {
public:

View File

@@ -1,118 +0,0 @@
#pragma once
#include <cstdio>
#include "backend.hpp"
#include "tensor.hpp"
#ifndef BLOCK_SIZE
#define BLOCK_SIZE 128
#endif // BLOCK_SIZE
/**
* @brief CUDA error checking macro
*
*/
#define CUDA_CHECK(call) \
do { \
cudaError_t result = call; \
if (result != cudaSuccess) { \
fprintf(stderr, "CUDA error at %s:%d code=%d(%s) \"%s\" \n", \
__FILE__, __LINE__, static_cast<unsigned int>(result), \
cudaGetErrorString(result), #call); \
exit(EXIT_FAILURE); \
} \
} while (0)
namespace CUDANet::Backend {
class CUDA : public Backend {
public:
// Memory management
void* allocate(size_t bytes) override;
void deallocate(void* ptr) override;
// Tensor ops
void print(const CUDANet::Tensor& input) override;
void zero(CUDANet::Tensor& input) override;
void fill(CUDANet::Tensor &input, int value) override;
void
copy_to_device(CUDANet::Tensor& tensor, void* data, size_t size) override;
void sum(const CUDANet::Tensor& input, CUDANet::Tensor& sum) override;
void max(const CUDANet::Tensor& input, CUDANet::Tensor& max) override;
// Layer ops
void relu(CUDANet::Tensor& tensor) override;
void sigmoid(CUDANet::Tensor& tensor) override;
void softmax(
CUDANet::Tensor& tensor,
CUDANet::Tensor& temp_max,
CUDANet::Tensor& temp_sum
) override;
CUDANet::Tensor& dense(
const CUDANet::Tensor& weights,
const CUDANet::Tensor& biases,
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
const size_t input_size,
const size_t output_size
) override;
CUDANet::Tensor& conv2d(
const CUDANet::Tensor& weights,
const CUDANet::Tensor& biases,
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
const CUDANet::Shape in_shape,
const CUDANet::Shape padding_shape,
const CUDANet::Shape kernel_shape,
const CUDANet::Shape stride_shape,
const CUDANet::Shape out_shape
) override;
CUDANet::Tensor& max_pool2d(
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
CUDANet::Shape input_shape,
CUDANet::Shape pool_shape,
CUDANet::Shape stride_shape,
CUDANet::Shape padding_shape,
CUDANet::Shape output_shape
) override;
CUDANet::Tensor& avg_pool2d(
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
CUDANet::Shape input_shape,
CUDANet::Shape pool_shape,
CUDANet::Shape stride_shape,
CUDANet::Shape padding_shape,
CUDANet::Shape output_shape
) override;
CUDANet::Tensor& batch_norm(
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
CUDANet::Shape input_shape,
CUDANet::Tensor& weights,
CUDANet::Tensor& biases,
CUDANet::Tensor& running_mean,
CUDANet::Tensor& running_var,
CUDANet::Tensor& epsilon
) override;
CUDANet::Tensor& concat(
CUDANet::Tensor& input_a,
CUDANet::Tensor& input_b,
CUDANet::Tensor& output
) override;
CUDANet::Tensor& add(
CUDANet::Tensor& input_a,
CUDANet::Tensor& input_b,
CUDANet::Tensor& output
) override;
};
} // namespace CUDANet::Backend

View File

@@ -0,0 +1,11 @@
#pragma once
// CUDA Backend Implementation
#include "backend/cuda/cuda.cuh"
// CUDA Kernels
#include "backend/cuda/kernels/activation_functions.cuh"
#include "backend/cuda/kernels/convolution.cuh"
#include "backend/cuda/kernels/matmul.cuh"
#include "backend/cuda/kernels/pool.cuh"

View File

@@ -0,0 +1,243 @@
#pragma once
#include <cstdio>
#include <set>
#include "backend.hpp"
#include "tensor.hpp"
#ifndef BLOCK_SIZE
#define BLOCK_SIZE 128
#endif // BLOCK_SIZE
/**
* @brief CUDA error checking macro
*
*/
#define CUDA_CHECK(call) \
do { \
cudaError_t result = call; \
if (result != cudaSuccess) { \
fprintf( \
stderr, "CUDA error at %s:%d code=%d(%s) \"%s\" \n", __FILE__, \
__LINE__, static_cast<unsigned int>(result), \
cudaGetErrorString(result), #call \
); \
exit(EXIT_FAILURE); \
} \
} while (0)
namespace CUDANet::Backends {
template <DType dtype>
struct cuda_dtype_map;
template <>
struct cuda_dtype_map<DType::FLOAT32> {
using type = float;
};
class CUDA : public Backend {
public:
CUDA(const BackendConfig& config);
bool supports_dtype(DType dtype) const override;
void set_default_dtype(DType dtype) override;
DType get_default_dtype() const override;
static bool is_cuda_available();
void initialize();
// Memory management
void* allocate(size_t bytes) override;
void deallocate(void* ptr) override;
// Tensor ops dispatchers
void print(const CUDANet::Tensor& input) override;
void zero(CUDANet::Tensor& input) override;
void fill(CUDANet::Tensor& input, int value) override;
void
copy_to_device(CUDANet::Tensor& tensor, void* data, size_t size) override;
void sum(const CUDANet::Tensor& input, CUDANet::Tensor& sum) override;
void max(const CUDANet::Tensor& input, CUDANet::Tensor& max) override;
// Layer ops dispatchers
void relu(CUDANet::Tensor& tensor) override;
void sigmoid(CUDANet::Tensor& tensor) override;
void softmax(
CUDANet::Tensor& tensor,
CUDANet::Tensor& temp_max,
CUDANet::Tensor& temp_sum
) override;
CUDANet::Tensor& dense(
const CUDANet::Tensor& weights,
const CUDANet::Tensor& biases,
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
const size_t input_size,
const size_t output_size
) override;
CUDANet::Tensor& conv2d(
const CUDANet::Tensor& weights,
const CUDANet::Tensor& biases,
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
const CUDANet::Shape in_shape,
const CUDANet::Shape padding_shape,
const CUDANet::Shape kernel_shape,
const CUDANet::Shape stride_shape,
const CUDANet::Shape out_shape
) override;
CUDANet::Tensor& max_pool2d(
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
CUDANet::Shape input_shape,
CUDANet::Shape pool_shape,
CUDANet::Shape stride_shape,
CUDANet::Shape padding_shape,
CUDANet::Shape output_shape
) override;
CUDANet::Tensor& avg_pool2d(
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
CUDANet::Shape input_shape,
CUDANet::Shape pool_shape,
CUDANet::Shape stride_shape,
CUDANet::Shape padding_shape,
CUDANet::Shape output_shape
) override;
CUDANet::Tensor& batch_norm(
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
CUDANet::Shape input_shape,
CUDANet::Tensor& weights,
CUDANet::Tensor& biases,
CUDANet::Tensor& running_mean,
CUDANet::Tensor& running_var,
CUDANet::Tensor& epsilon
) override;
CUDANet::Tensor& concat(
CUDANet::Tensor& input_a,
CUDANet::Tensor& input_b,
CUDANet::Tensor& output
) override;
CUDANet::Tensor& add(
CUDANet::Tensor& input_a,
CUDANet::Tensor& input_b,
CUDANet::Tensor& output
) override;
private:
int device_id;
std::set<DType> supported_dtypes;
// Tensor ops template impls
template <typename T>
void print_impl(const CUDANet::Tensor& input);
template <typename T>
void fill_impl(CUDANet::Tensor& input, int value);
template <typename T>
void copy_to_device_impl(CUDANet::Tensor& tensor, void* data, size_t size);
template <typename T>
void sum_impl(const CUDANet::Tensor& input, CUDANet::Tensor& sum);
template <typename T>
void max_impl(const CUDANet::Tensor& input, CUDANet::Tensor& max);
// Layer ops template impls
template <typename T>
void relu_impl(CUDANet::Tensor& tensor);
template <typename T>
void sigmoid_impl(CUDANet::Tensor& tensor);
template <typename T>
void softmax_impl(
CUDANet::Tensor& tensor,
CUDANet::Tensor& temp_max,
CUDANet::Tensor& temp_sum
);
template <typename T>
CUDANet::Tensor& dense_impl(
const CUDANet::Tensor& weights,
const CUDANet::Tensor& biases,
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
const size_t input_size,
const size_t output_size
);
template <typename T>
CUDANet::Tensor& conv2d_impl(
const CUDANet::Tensor& weights,
const CUDANet::Tensor& biases,
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
const CUDANet::Shape in_shape,
const CUDANet::Shape padding_shape,
const CUDANet::Shape kernel_shape,
const CUDANet::Shape stride_shape,
const CUDANet::Shape out_shape
);
template <typename T>
CUDANet::Tensor& max_pool2d_impl(
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
CUDANet::Shape input_shape,
CUDANet::Shape pool_shape,
CUDANet::Shape stride_shape,
CUDANet::Shape padding_shape,
CUDANet::Shape output_shape
);
template <typename T>
CUDANet::Tensor& avg_pool2d_impl(
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
CUDANet::Shape input_shape,
CUDANet::Shape pool_shape,
CUDANet::Shape stride_shape,
CUDANet::Shape padding_shape,
CUDANet::Shape output_shape
);
template <typename T>
CUDANet::Tensor& batch_norm_impl(
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
CUDANet::Shape input_shape,
CUDANet::Tensor& weights,
CUDANet::Tensor& biases,
CUDANet::Tensor& running_mean,
CUDANet::Tensor& running_var,
CUDANet::Tensor& epsilon
);
template <typename T>
CUDANet::Tensor& concat_impl(
CUDANet::Tensor& input_a,
CUDANet::Tensor& input_b,
CUDANet::Tensor& output
);
template <typename T>
CUDANet::Tensor& add_impl(
CUDANet::Tensor& input_a,
CUDANet::Tensor& input_b,
CUDANet::Tensor& output
);
};
} // namespace CUDANet::Backends

View File

@@ -0,0 +1,22 @@
#pragma once
#include <cuda_runtime.h>
namespace CUDANet::Kernels {
template <typename T>
__global__ void sigmoid(
const T* __restrict__ src,
T* __restrict__ dst,
const unsigned int len
);
template <typename T>
__global__ void relu(
const T* __restrict__ src,
T* __restrict__ dst,
const unsigned int len
);
} // namespace CUDANet::Kernels

View File

@@ -5,11 +5,12 @@
namespace CUDANet::Kernels {
template <typename T>
__global__ void convolution(
const float* __restrict__ d_input,
const float* __restrict__ d_kernel,
const float* __restrict__ d_bias,
float* __restrict__ d_output,
const T* __restrict__ d_input,
const T* __restrict__ d_kernel,
const T* __restrict__ d_bias,
T* __restrict__ d_output,
const Shape input_shape,
const Shape padding_shape,
const Shape kernel_shape,

View File

@@ -0,0 +1,109 @@
#pragma once
#include <cuda_runtime.h>
namespace CUDANet::Kernels {
template <typename T>
__global__ void mat_vec_mul(
const T* __restrict__ d_matrix,
const T* __restrict__ d_vector,
T* __restrict__ d_output,
const unsigned int w,
const unsigned int h
);
template <typename T>
__global__ void vec_vec_add(
const T* __restrict__ d_vector1,
const T* __restrict__ d_vector2,
T* __restrict__ d_output,
const unsigned int w
);
template <typename T>
__global__ void vec_vec_sub(
const T* __restrict__ d_vector1,
const T* __restrict__ d_vector2,
T* __restrict__ d_output,
const unsigned int w
);
template <typename T>
__global__ void vec_vec_mul(
const T* __restrict__ d_vector1,
const T* __restrict__ d_vector2,
T* __restrict__ d_output,
const unsigned int w
);
template <typename T>
__global__ void vec_scalar_sub(
const T* __restrict__ d_src,
T* __restrict__ d_out,
const T* __restrict__ d_scalar,
const unsigned int len
);
template <typename T>
__global__ void vec_scalar_add(
const T* __restrict__ d_src,
T* __restrict__ d_out,
const T* __restrict__ d_scalar,
const unsigned int len
);
template <typename T>
__global__ void vec_scalar_div(
const T* __restrict__ d_src,
T* __restrict__ d_out,
const T* __restrict__ d_scalar,
const unsigned int len
);
template <typename T>
__global__ void vec_scalar_mul(
const T* __restrict__ d_src,
T* __restrict__ d_out,
const T* __restrict__ d_scalar,
const unsigned int len
);
template <typename T>
__global__ void vec_exp(
const T* __restrict__ src,
T* __restrict__ dst,
const unsigned int len
);
template <typename T>
__global__ void vec_sqrt(
const T* __restrict__ src,
T* __restrict__ dst,
const unsigned int len
);
template <typename T>
__global__ void vec_scale(
const T* __restrict__ src,
T* __restrict__ dst,
const T* __restrict__ scale,
const T* epsilon,
const unsigned int len
);
template <typename T>
__global__ void max_reduce(
const T* __restrict__ d_vector,
T* __restrict__ d_output,
const unsigned int len
);
template <typename T>
__global__ void sum_reduce(
const T* __restrict__ d_vector,
T* __restrict__ d_output,
const unsigned int len
);
} // namespace CUDANet::Kernels

View File

@@ -5,9 +5,10 @@
namespace CUDANet::Kernels {
template <typename T>
__global__ void max_pool(
const float* __restrict__ d_input,
float* __restrict__ d_output,
const T* __restrict__ d_input,
T* __restrict__ d_output,
const Shape input_shape,
const Shape output_shape,
const Shape pool_shape,
@@ -15,9 +16,10 @@ __global__ void max_pool(
const Shape padding_shape
);
template <typename T>
__global__ void avg_pool(
const float* __restrict__ d_input,
float* __restrict__ d_output,
const T* __restrict__ d_input,
T* __restrict__ d_output,
const Shape input_shape,
const Shape output_shape,
const Shape pool_shape,

View File

@@ -1,35 +0,0 @@
#ifndef CUDANET_H
#define CUDANET_H
#ifdef USE_CUDA
#include "activation_functions.cuh"
#include "convolution.cuh"
#include "matmul.cuh"
#include "pooling.cuh"
#endif
// Layers
#include "activation.hpp"
#include "add.hpp"
#include "avg_pooling.hpp"
#include "batch_norm.hpp"
#include "concat.hpp"
#include "conv2d.hpp"
#include "dense.hpp"
#include "input.hpp"
#include "layer.hpp"
#include "max_pooling.hpp"
#include "output.hpp"
// Models
#include "model.hpp"
#include "module.hpp"
// Utils
#include "imagenet.hpp"
#ifdef USE_CUDA
#include "cuda_helper.cuh"
#include "vector.cuh"
#endif
#endif // CUDANET_H

55
include/cudanet.hpp Normal file
View File

@@ -0,0 +1,55 @@
#pragma once
// ============================================================================
// Core Data Structures & Abstractions (BACKEND-INDEPENDENT)
// ============================================================================
#include "shape.hpp"
#include "backend.hpp"
#include "tensor.hpp"
#include "layer.hpp"
// ============================================================================
// Container Classes
// ============================================================================
#include "module.hpp"
#include "model.hpp"
// ============================================================================
// Layer Implementations
// ============================================================================
// Activation
#include "layers/activation.hpp"
// Normalization
#include "layers/batch_norm.hpp"
// Linear
#include "layers/dense.hpp"
// Convolutional
#include "layers/conv2d.hpp"
// Pooling
#include "layers/max_pool.hpp"
#include "layers/avg_pool.hpp"
// Composition (element-wise operations)
#include "layers/add.hpp"
#include "layers/concat.hpp"
// ============================================================================
// Dataset Labels
// ============================================================================
#include "datasets/imagenet.hpp"
// ============================================================================
// Backend-Specific Includes (conditionally compiled)
// ============================================================================
#ifdef USE_CUDA
#include "backend/cuda/all.cuh"
#endif

View File

@@ -1,5 +1,4 @@
#ifndef CUDANET_IMAGENET_H
#define CUDANET_IMAGENET_H
#pragma once
#include <map>
#include <string>
@@ -1012,5 +1011,3 @@ const std::map <int, std::string> IMAGENET_CLASS_MAP = {
// clang-format on
}
#endif // CUDANET_IMAGENET_H

View File

@@ -1,36 +0,0 @@
#ifndef CUDANET_ACTIVATION_FUNCTIONS_H
#define CUDANET_ACTIVATION_FUNCTIONS_H
#include <cuda_runtime.h>
namespace CUDANet::Kernels {
/**
* @brief Sigmoid activation function kernel
*
* @param src Pointer to the source array
* @param dst Pointer to the destination array
* @param len Length of the arrays
*/
__global__ void sigmoid(
const float* __restrict__ src,
float* __restrict__ dst,
const unsigned int len
);
/**
* @brief Relu activation function kernel
*
* @param src Pointer to the source array
* @param dst Pointer to the destination array
* @param len Length of the arrays
*/
__global__ void relu(
const float* __restrict__ src,
float* __restrict__ dst,
const unsigned int len
);
} // namespace CUDANet::Kernels
#endif // CUDANET_ACTIVATION_FUNCTIONS_H

View File

@@ -1,195 +0,0 @@
#ifndef CUDANET_MATMUL_H
#define CUDANET_MATMUL_H
#include <cuda_runtime.h>
namespace CUDANet::Kernels {
/**
* @brief Matrix vector multiplication kernel
*
* @param d_matrix Device pointer to matrix
* @param d_vector Device pointer to vector
* @param d_output Device pointer to output vector
* @param w Width of the matrix
* @param h Height of the matrix
*/
__global__ void mat_vec_mul(
const float* __restrict__ d_matrix,
const float* __restrict__ d_vector,
float* __restrict__ d_output,
const unsigned int w,
const unsigned int h
);
/**
* @brief Vector vector addition kernel
*
* @param d_vector1 Device pointer to first vector
* @param d_vector2 Device pointer to second vector
* @param d_output Device pointer to output vector
* @param w Length of the vectors
*/
__global__ void vec_vec_add(
const float* __restrict__ d_vector1,
const float* __restrict__ d_vector2,
float* __restrict__ d_output,
const unsigned int w
);
/**
* @brief Vector vector subtraction kernel
*
* @param d_vector1
* @param d_vector2
* @param d_output
* @param w
* @return __global__
*/
__global__ void vec_vec_sub(
const float* __restrict__ d_vector1,
const float* __restrict__ d_vector2,
float* __restrict__ d_output,
const unsigned int w
);
__global__ void vec_vec_mul(
const float* __restrict__ d_vector1,
const float* __restrict__ d_vector2,
float* __restrict__ d_output,
const unsigned int w
);
/**
* @brief Sub scalar from each element of the vector
*
* @param d_vector
* @param d_scalar
* @param d_output
* @param w
* @return __global__
*/
__global__ void vec_scalar_sub(
const float* __restrict__ d_src,
float* __restrict__ d_out,
const float* __restrict__ d_scalar,
const unsigned int len
);
/**
* @brief Add scalar to each element of the vector
*
* @param d_src
* @param d_out
* @param d_scalar
* @param len
* @return __global__
*/
__global__ void vec_scalar_add(
const float* __restrict__ d_src,
float* __restrict__ d_out,
const float* __restrict__ d_scalar,
const unsigned int len
);
/**
* @brief Divide each element of the vector by a scalar
*
* @param src Pointer to the source array
* @param dst Pointer to the destination array
* @param len Length of the arrays
*/
__global__ void vec_scalar_div(
const float* __restrict__ d_src,
float* __restrict__ d_out,
const float* __restrict__ d_scalar,
const unsigned int len
);
/**
* @brief Multiply each element of the vector by a scalar
*
* @param d_src
* @param d_out
* @param d_scalar
* @param len
* @return __global__
*/
__global__ void vec_scalar_mul(
const float* __restrict__ d_src,
float* __restrict__ d_out,
const float* __restrict__ d_scalar,
const unsigned int len
);
/**
* @brief Exponentiate each element of the vector
*
* @param src Pointer to the source array
* @param dst Pointer to the destination array
* @param len Length of the arrays
*/
__global__ void vec_exp(
const float* __restrict__ src,
float* __restrict__ dst,
const unsigned int len
);
/**
* @brief Compute the square root of each element of the vector
*
* @param src Device pointer to source vector
* @param dst Device pointer to destination vector
* @param len Length of the vector
*/
__global__ void vec_sqrt(
const float* __restrict__ src,
float* __restrict__ dst,
const unsigned int len
);
/**
* @brief Scales the vector by 1/sqrt(scale + epsilon)
*
* @param src Device pointer to source vector
* @param dst Device pointer to destination vector
* @param scale Scale
* @param epsilon Epsilon
* @param len Length of the vector
*/
__global__ void vec_scale(
const float* __restrict__ src,
float* __restrict__ dst,
const float* __restrict__ scale,
const float* epsilon,
const unsigned int len
);
/**
* @brief Max reduction kernel
*
* @param d_vector Device pointer to vector
* @param d_output Device pointer to output vector
*/
__global__ void max_reduce(
const float* __restrict__ d_vector,
float* __restrict__ d_output,
const unsigned int len
);
/**
* @brief
*
* @param d_vector Device pointer to vector
* @param d_output Device pointer to output vector
* @param len Length of the vector
*/
__global__ void sum_reduce(
const float* __restrict__ d_vector,
float* __restrict__ d_output,
const unsigned int len
);
} // namespace CUDANet::Kernels
#endif // CUDANET_MATMUL_H

View File

@@ -16,6 +16,8 @@ namespace CUDANet {
*
*/
class Layer {
protected:
CUDANet::DType dtype;
public:
virtual ~Layer(){};
@@ -32,11 +34,11 @@ class Layer {
virtual void set_weights(void *input) = 0;
virtual CUDANet::Tensor& get_weights() = 0;
virtual size_t get_weights_size() = 0;
virtual void set_biases(void *input) = 0;
virtual CUDANet::Tensor& get_biases() = 0;
virtual size_t get_biases_size() = 0;
};
} // namespace CUDANet::Layers
} // namespace CUDANet

View File

@@ -20,12 +20,13 @@ enum ActivationType { SIGMOID, RELU, SOFTMAX, NONE };
* @brief Utility class that performs activation
*
*/
class Activation : public Layer {
class Activation : public CUDANet::Layer {
public:
Activation() = default;
Activation(CUDANet::Backend* backend, ActivationType activation, const CUDANet::Shape &shape);
Activation(ActivationType activation, const CUDANet::Shape &shape, CUDANet::Backend* backend);
Activation(ActivationType activation, const CUDANet::Shape &shape, CUDANet::DType dtype, CUDANet::Backend* backend);
~Activation() = default;
@@ -41,16 +42,16 @@ class Activation : public Layer {
void set_weights(void *input) override;
CUDANet::Tensor& get_weights() override;
size_t get_weights_size() override;
void set_biases(void *input) override;
CUDANet::Tensor& get_biases() override;
size_t get_biases_size() override;
private:
CUDANet::Backend* backend;
ActivationType activationType;
ActivationType activation_type;
CUDANet::Shape shape;
CUDANet::Tensor softmax_sum;

View File

@@ -8,6 +8,7 @@ namespace CUDANet::Layers {
class Add {
public:
Add(CUDANet::Shape a_shape, CUDANet::Shape b_shape, CUDANet::Backend* backend);
Add(CUDANet::Shape a_shape, CUDANet::Shape b_shape, CUDANet::DType dtype, CUDANet::Backend* backend);
~Add();
@@ -19,6 +20,8 @@ class Add {
CUDANet::Tensor output;
CUDANet::Backend *backend;
CUDANet::DType dtype;
};
} // namespace CUDANet::Layers

View File

@@ -4,7 +4,7 @@
namespace CUDANet::Layers {
class AvgPool2d : public Layer {
class AvgPool2d : public CUDANet::Layer {
public:
AvgPool2d(
CUDANet::Shape input_shape,
@@ -13,6 +13,14 @@ class AvgPool2d : public Layer {
CUDANet::Shape padding_shape,
CUDANet::Backend *backend
);
AvgPool2d(
CUDANet::Shape input_shape,
CUDANet::Shape pool_shape,
CUDANet::Shape stride_shape,
CUDANet::Shape padding_shape,
CUDANet::DType dtype,
CUDANet::Backend *backend
);
~AvgPool2d();
@@ -28,11 +36,11 @@ class AvgPool2d : public Layer {
void set_weights(void* input) override;
CUDANet::Tensor& get_weights() override;
size_t get_weights_size() override;
void set_biases(void* input) override;
CUDANet::Tensor& get_biases() override;
size_t get_biases_size() override;
protected:
CUDANet::Shape in_shape;
@@ -50,6 +58,7 @@ class AvgPool2d : public Layer {
class AdaptiveAvgPool2d : public AvgPool2d {
public:
AdaptiveAvgPool2d(CUDANet::Shape input_shape, CUDANet::Shape output_shape, CUDANet::Backend *backend);
AdaptiveAvgPool2d(CUDANet::Shape input_shape, CUDANet::Shape output_shape, CUDANet::DType dtype, CUDANet::Backend *backend);
};
} // namespace CUDANet::Layers

View File

@@ -4,9 +4,10 @@
namespace CUDANet::Layers {
class BatchNorm2d : public Layer {
class BatchNorm2d : public CUDANet::Layer {
public:
BatchNorm2d(CUDANet::Shape input_shape, float epsilon, CUDANet::Backend *backend);
BatchNorm2d(CUDANet::Shape input_shape, float epsilon, CUDANet::DType dtype, CUDANet::Backend *backend);
~BatchNorm2d();
@@ -22,19 +23,19 @@ class BatchNorm2d : public Layer {
void set_weights(void* input) override;
CUDANet::Tensor& get_weights() override;
size_t get_weights_size() override;
void set_biases(void* input) override;
CUDANet::Tensor& get_biases() override;
size_t get_biases_size() override;
void set_running_mean(void* input);
CUDANet::Tensor& get_running_mean();
size_t get_running_mean_size();
void set_running_var(void* input);
CUDANet::Tensor& get_running_var();
size_t get_running_var_size();
private:
CUDANet::Shape in_shape;

View File

@@ -12,6 +12,7 @@ class Concat {
public:
Concat(const CUDANet::Shape a_shape, const CUDANet::Shape b_shape, CUDANet::Backend *backend);
Concat(const CUDANet::Shape a_shape, const CUDANet::Shape b_shape, CUDANet::DType dtype, CUDANet::Backend *backend);
~Concat();
@@ -27,6 +28,8 @@ class Concat {
CUDANet::Tensor output;
CUDANet::Backend *backend;
CUDANet::DType dtype;
};
} // namespace CUDANet::Layers

View File

@@ -8,7 +8,7 @@ namespace CUDANet::Layers {
* @brief 2D convolutional layer
*
*/
class Conv2d : public Layer {
class Conv2d : public CUDANet::Layer {
public:
Conv2d(
CUDANet::Shape input_shape,
@@ -17,8 +17,16 @@ class Conv2d : public Layer {
CUDANet::Shape padding_shape,
CUDANet::Backend* backend
);
Conv2d(
CUDANet::Shape input_shape,
CUDANet::Shape kernel_shape,
CUDANet::Shape stride_shape,
CUDANet::Shape padding_shape,
CUDANet::DType dtype,
CUDANet::Backend* backend
);
~Conv2d() {};
~Conv2d();
CUDANet::Tensor& forward(CUDANet::Tensor& input) override;
@@ -32,11 +40,11 @@ class Conv2d : public Layer {
void set_weights(void* input) override;
CUDANet::Tensor& get_weights() override;
size_t get_weights_size() override;
void set_biases(void* input) override;
CUDANet::Tensor& get_biases() override;
size_t get_biases_size() override;
CUDANet::Shape get_padding_shape();

View File

@@ -9,10 +9,11 @@ namespace CUDANet::Layers {
* @brief Dense (fully connected) layer
*
*/
class Dense : public Layer {
class Dense : public CUDANet::Layer {
public:
Dense(CUDANet::Shape input_shape, CUDANet::Shape output_shape, CUDANet::Backend *backend);
Dense(CUDANet::Shape input_shape, CUDANet::Shape output_shape, CUDANet::DType dtype, CUDANet::Backend *backend);
~Dense();
@@ -28,11 +29,11 @@ class Dense : public Layer {
void set_weights(void *input) override;
CUDANet::Tensor& get_weights() override;
size_t get_weights_size() override;
void set_biases(void *input) override;
CUDANet::Tensor& get_biases() override;
size_t get_biases_size() override;
private:
CUDANet::Backend *backend;

View File

@@ -4,7 +4,7 @@
namespace CUDANet::Layers {
class MaxPool2d : public Layer {
class MaxPool2d : public CUDANet::Layer {
public:
MaxPool2d(
CUDANet::Shape input_shape,
@@ -13,6 +13,14 @@ class MaxPool2d : public Layer {
CUDANet::Shape padding_shape,
CUDANet::Backend* backend
);
MaxPool2d(
CUDANet::Shape input_shape,
CUDANet::Shape pool_shape,
CUDANet::Shape stride_shape,
CUDANet::Shape padding_shape,
CUDANet::DType dtype,
CUDANet::Backend* backend
);
~MaxPool2d();
CUDANet::Tensor& forward(CUDANet::Tensor &input) override;
@@ -27,11 +35,11 @@ class MaxPool2d : public Layer {
void set_weights(void *input) override;
CUDANet::Tensor& get_weights() override;
size_t get_weights_size() override;
void set_biases(void *input) override;
CUDANet::Tensor& get_biases() override;
size_t get_biases_size() override;

View File

@@ -15,10 +15,6 @@ class Module {
CUDANet::Shape output_shape();
size_t input_size();
size_t output_size();
void register_layer(const std::string& name, Layer* layer);
void register_module(Module& module);

View File

@@ -1,11 +1,78 @@
#pragma once
#ifndef __host__
#define __host__
#endif
#ifndef __device__
#define __device__
#endif
#include <format>
#include <stdexcept>
#include <vector>
namespace CUDANet {
typedef std::vector<size_t> Shape;
struct Shape {
static constexpr size_t MAX_DIMS = 8;
size_t dims[MAX_DIMS];
size_t ndim;
__host__ __device__ Shape() : ndim(0) {
for (int i = 0; i < MAX_DIMS; i++) dims[i] = 0;
}
__host__ Shape(std::initializer_list<size_t> list) : ndim(list.size()) {
if (ndim > MAX_DIMS) {
throw std::runtime_error("Too many dimensions");
}
size_t i = 0;
for (auto val : list) {
dims[i++] = val;
}
for (; i < MAX_DIMS; i++) dims[i] = 0;
}
__host__ Shape(const std::vector<size_t>& vec) : ndim(vec.size()) {
if (ndim > MAX_DIMS) {
throw std::runtime_error("Too many dimensions");
}
for (size_t i = 0; i < ndim; i++) {
dims[i] = vec[i];
}
for (size_t i = ndim; i < MAX_DIMS; i++) dims[i] = 0;
}
__host__ __device__ size_t operator[](size_t idx) const {
return dims[idx];
}
__host__ __device__ size_t& operator[](size_t idx) {
return dims[idx];
}
__host__ __device__ size_t size() const { return ndim; }
__host__ bool operator==(const Shape& other) const {
if (ndim != other.ndim) return false;
for (size_t i = 0; i < ndim; i++) {
if (dims[i] != other.dims[i]) return false;
}
return true;
}
__host__ bool operator!=(const Shape& other) const {
return !(*this == other);
}
__host__ __device__ bool empty() const {
return ndim == 0;
}
};
std::string format_shape(const Shape& shape) {
std::string result;

View File

@@ -16,11 +16,17 @@ enum class DType
// INT32, // Not implemented yet
};
size_t dtype_size(DType dtype);
// Forward declaration
class Backend;
class Tensor
{
public:
Tensor() = default;
Tensor(Shape shape, CUDANet::Backend* backend);
Tensor(Shape shape, DType dtype, CUDANet::Backend* backend);
Tensor(Tensor&& other) noexcept;
@@ -30,30 +36,19 @@ public:
~Tensor();
DType get_dtype() const;
size_t size() const;
size_t numel() const;
template <typename T>
const T* data() const {
return static_cast<T*>(d_ptr);
}
template <typename T>
T* data() {
return static_cast<T*>(d_ptr);
}
void* device_ptr() const;
void* device_ptr();
void zero();
template <typename T>
void fill(T value) {
backend->fill(*this, value);
}
void fill(int value);
template <typename T>
void set_data(T *data) {
backend->copy_to_device(*this, data, total_size);
}
void set_data(void *data);
private:
Shape shape;

40
src/backend_factory.cpp Normal file
View File

@@ -0,0 +1,40 @@
#include <stdexcept>
#include <memory>
#ifdef USE_CUDA
#include "backend/cuda/cuda.cuh"
#endif
#include "backend.hpp"
namespace CUDANet {
std::unique_ptr<Backend> BackendFactory::create(BackendType backend_type, const BackendConfig& config) {
switch (backend_type)
{
case BackendType::CUDA_BACKEND:
{
#ifdef USE_CUDA
if (!CUDANet::Backends::CUDA::is_cuda_available()) {
throw std::runtime_error("No CUDA devices found");
}
auto cuda = std::make_unique<CUDANet::Backends::CUDA>(config);
return cuda;
#else
throw std::runtime_error("Library was compiled without CUDA support.");
#endif
}
break;
default:
throw std::runtime_error("Invalid backend");
break;
}
return nullptr;
}
} // namespace CUDANet

76
src/backends/cuda/cuda.cu Normal file
View File

@@ -0,0 +1,76 @@
#include <cuda_runtime.h>
#include <cstdio>
#include <cstdlib>
#include <format>
#include "backend/cuda/cuda.cuh"
#include "tensor.hpp"
using namespace CUDANet::Backends;
CUDA::CUDA(const BackendConfig& config) {
device_id = config.device_id < 0 ? 0 : config.device_id;
supported_dtypes = {DType::FLOAT32};
default_dtype = DType::FLOAT32;
initialize();
}
bool CUDA::is_cuda_available() {
int device_count;
cudaError_t result = cudaGetDeviceCount(&device_count);
// Return false instead of crashing
if (result != cudaSuccess || device_count == 0) {
return false;
}
return true;
}
void CUDA::initialize() {
int device_count;
CUDA_CHECK(cudaGetDeviceCount(&device_count));
if (device_id >= device_count) {
throw std::runtime_error(std::format("Invalid device id {}, only {} devices available", device_id, device_count));
}
CUDA_CHECK(cudaSetDevice(device_id));
cudaDeviceProp deviceProp;
CUDA_CHECK(cudaGetDeviceProperties(&deviceProp, device_id));
std::printf("Using CUDA device %d: %s\n", device_id, deviceProp.name);
}
bool CUDA::supports_dtype(DType dtype) const {
return supported_dtypes.contains(dtype);
}
void CUDA::set_default_dtype(DType dtype) {
if (!supported_dtypes.contains(dtype)) {
throw std::runtime_error("Unsupported dtype");
}
default_dtype = dtype;
}
CUDANet::DType CUDA::get_default_dtype() const {
if (default_dtype) {
return default_dtype.value();
}
const_cast<CUDA*>(this)->default_dtype = DType::FLOAT32;
return DType::FLOAT32;
}
void* CUDA::allocate(size_t bytes) {
void* d_ptr = nullptr;
CUDA_CHECK(cudaMalloc(&d_ptr, bytes));
return d_ptr;
}
void CUDA::deallocate(void* ptr) {
CUDA_CHECK(cudaFree(ptr));
}

View File

@@ -1,38 +0,0 @@
#include <cuda_runtime.h>
#include <cstdio>
#include <cstdlib>
#include "backend/cuda.cuh"
cudaDeviceProp initializeCUDA() {
int deviceCount;
CUDA_CHECK(cudaGetDeviceCount(&deviceCount));
if (deviceCount == 0) {
std::fprintf(stderr, "No CUDA devices found. Exiting.\n");
std::exit(EXIT_FAILURE);
}
int device = 0;
CUDA_CHECK(cudaSetDevice(device));
cudaDeviceProp deviceProp;
CUDA_CHECK(cudaGetDeviceProperties(&deviceProp, device));
std::printf("Using CUDA device %d: %s\n", device, deviceProp.name);
return deviceProp;
}
using namespace CUDANet::Backend;
void* CUDA::allocate(size_t bytes) {
void* d_ptr = nullptr;
CUDA_CHECK(cudaMalloc(&d_ptr, bytes));
return d_ptr;
}
void CUDA::deallocate(void* ptr) {
CUDA_CHECK(cudaFree(ptr));
}

View File

@@ -1,12 +1,19 @@
#include "activation_functions.cuh"
#include "cuda_helper.cuh"
#include "backend/cuda/kernels/activation_functions.cuh"
using namespace CUDANet;
__global__ void Kernels::sigmoid(
template
__global__ void Kernels::sigmoid<float>(
const float* __restrict__ src,
float* __restrict__ dst,
const unsigned int len
);
template <typename T>
__global__ void Kernels::sigmoid(
const T* __restrict__ src,
T* __restrict__ dst,
const unsigned int len
) {
int stride = gridDim.x * blockDim.x;
int tid = blockDim.x * blockIdx.x + threadIdx.x;
@@ -16,10 +23,17 @@ __global__ void Kernels::sigmoid(
}
}
__global__ void Kernels::relu(
template __global__ void Kernels::relu<float>(
const float* __restrict__ src,
float* __restrict__ dst,
const unsigned int len
);
template <typename T>
__global__ void Kernels::relu(
const T* __restrict__ src,
T* __restrict__ dst,
const unsigned int len
) {
int stride = gridDim.x * blockDim.x;
int tid = blockDim.x * blockIdx.x + threadIdx.x;

View File

@@ -1,10 +1,10 @@
#include <iostream>
#include "convolution.cuh"
#include "backend/cuda/kernels/convolution.cuh"
using namespace CUDANet;
__global__ void Kernels::convolution(
template __global__ void Kernels::convolution<float>(
const float* __restrict__ d_input,
const float* __restrict__ d_kernel,
const float* __restrict__ d_bias,
@@ -14,6 +14,19 @@ __global__ void Kernels::convolution(
const Shape kernel_shape,
const Shape stride_shape,
const Shape output_shape
);
template <typename T>
__global__ void Kernels::convolution(
const T* __restrict__ d_input,
const T* __restrict__ d_kernel,
const T* __restrict__ d_bias,
T* __restrict__ d_output,
const Shape input_shape,
const Shape padding_shape,
const Shape kernel_shape,
const Shape stride_shape,
const Shape output_shape
) {
int j = blockDim.x * blockIdx.x + threadIdx.x;
int i = blockDim.y * blockIdx.y + threadIdx.y;
@@ -23,7 +36,7 @@ __global__ void Kernels::convolution(
return;
}
float sum = 0.0f;
T sum = static_cast<T>(0);
// Iterate over kernel and input matrix
for (int c = 0; c < input_shape[2]; c++) {
@@ -39,7 +52,7 @@ __global__ void Kernels::convolution(
continue;
}
int kernelIndex =
int kernel_idx =
f * kernel_shape[0] * kernel_shape[1] * input_shape[2] +
c * kernel_shape[0] * kernel_shape[1] +
k * kernel_shape[1] + l;
@@ -48,7 +61,7 @@ __global__ void Kernels::convolution(
input_shape[1] +
(j * stride_shape[1] + l - padding_shape[1]);
sum += d_kernel[kernelIndex] * d_input[inputIndex];
sum += d_kernel[kernel_idx] * d_input[inputIndex];
}
}
}

View File

@@ -1,19 +1,28 @@
#include "cuda_helper.cuh"
#include "matmul.cuh"
#include "backend/cuda/cuda.cuh"
#include "backend/cuda/kernels/matmul.cuh"
using namespace CUDANet;
__global__ void Kernels::mat_vec_mul(
template __global__ void Kernels::mat_vec_mul<float>(
const float* __restrict__ d_matrix,
const float* __restrict__ d_vector,
float* __restrict__ d_output,
const unsigned int w,
const unsigned int h
);
template <typename T>
__global__ void Kernels::mat_vec_mul(
const T* __restrict__ d_matrix,
const T* __restrict__ d_vector,
T* __restrict__ d_output,
const unsigned int w,
const unsigned int h
) {
int tid = blockDim.x * blockIdx.x + threadIdx.x;
if (tid < h) {
float temp = 0.0f;
T temp = static_cast<T>(0);
for (unsigned int j = 0; j < w; j++) {
temp += d_matrix[tid * w + j] * d_vector[j];
@@ -23,11 +32,19 @@ __global__ void Kernels::mat_vec_mul(
}
}
__global__ void Kernels::vec_vec_add(
template __global__ void Kernels::vec_vec_add<float>(
const float* __restrict__ d_vector1,
const float* __restrict__ d_vector2,
float* __restrict__ d_output,
const unsigned int w
);
template <typename T>
__global__ void Kernels::vec_vec_add(
const T* __restrict__ d_vector1,
const T* __restrict__ d_vector2,
T* __restrict__ d_output,
const unsigned int w
) {
int tid = blockDim.x * blockIdx.x + threadIdx.x;
if (tid >= w) {
@@ -36,11 +53,19 @@ __global__ void Kernels::vec_vec_add(
d_output[tid] = d_vector1[tid] + d_vector2[tid];
}
__global__ void Kernels::vec_vec_sub(
template __global__ void Kernels::vec_vec_sub<float>(
const float* __restrict__ d_vector1,
const float* __restrict__ d_vector2,
float* __restrict__ d_output,
const unsigned int w
);
template <typename T>
__global__ void Kernels::vec_vec_sub(
const T* __restrict__ d_vector1,
const T* __restrict__ d_vector2,
T* __restrict__ d_output,
const unsigned int w
) {
int tid = blockDim.x * blockIdx.x + threadIdx.x;
if (tid >= w) {
@@ -49,11 +74,19 @@ __global__ void Kernels::vec_vec_sub(
d_output[tid] = d_vector1[tid] - d_vector2[tid];
}
__global__ void Kernels::vec_vec_mul(
template __global__ void Kernels::vec_vec_mul<float>(
const float* __restrict__ d_vector1,
const float* __restrict__ d_vector2,
float* __restrict__ d_output,
const unsigned int w
);
template <typename T>
__global__ void Kernels::vec_vec_mul(
const T* __restrict__ d_vector1,
const T* __restrict__ d_vector2,
T* __restrict__ d_output,
const unsigned int w
) {
int tid = blockDim.x * blockIdx.x + threadIdx.x;
if (tid >= w) {
@@ -62,11 +95,19 @@ __global__ void Kernels::vec_vec_mul(
d_output[tid] = d_vector1[tid] * d_vector2[tid];
}
__global__ void Kernels::vec_scalar_sub(
template __global__ void Kernels::vec_scalar_sub<float>(
const float* __restrict__ d_src,
float* __restrict__ d_out,
const float* __restrict__ d_scalar,
const unsigned int len
);
template <typename T>
__global__ void Kernels::vec_scalar_sub(
const T* __restrict__ d_src,
T* __restrict__ d_out,
const T* __restrict__ d_scalar,
const unsigned int len
) {
int tid = blockDim.x * blockIdx.x + threadIdx.x;
if (tid >= len) {
@@ -75,11 +116,19 @@ __global__ void Kernels::vec_scalar_sub(
d_out[tid] = d_src[tid] - *d_scalar;
}
__global__ void Kernels::vec_scalar_add(
template __global__ void Kernels::vec_scalar_add<float>(
const float* __restrict__ d_src,
float* __restrict__ d_out,
const float* __restrict__ d_scalar,
const unsigned int len
);
template <typename T>
__global__ void Kernels::vec_scalar_add(
const T* __restrict__ d_src,
T* __restrict__ d_out,
const T* __restrict__ d_scalar,
const unsigned int len
) {
int tid = blockDim.x * blockIdx.x + threadIdx.x;
if (tid >= len) {
@@ -88,11 +137,19 @@ __global__ void Kernels::vec_scalar_add(
d_out[tid] = d_src[tid] + *d_scalar;
}
__global__ void Kernels::vec_scalar_div(
template __global__ void Kernels::vec_scalar_div<float>(
const float* __restrict__ d_src,
float* __restrict__ d_out,
const float* __restrict__ d_scalar,
const unsigned int len
);
template <typename T>
__global__ void Kernels::vec_scalar_div(
const T* __restrict__ d_src,
T* __restrict__ d_out,
const T* __restrict__ d_scalar,
const unsigned int len
) {
int tid = blockDim.x * blockIdx.x + threadIdx.x;
if (tid >= len) {
@@ -101,11 +158,19 @@ __global__ void Kernels::vec_scalar_div(
d_out[tid] = d_src[tid] / *d_scalar;
}
__global__ void Kernels::vec_scalar_mul(
template __global__ void Kernels::vec_scalar_mul<float>(
const float* __restrict__ d_src,
float* __restrict__ d_out,
const float* __restrict__ d_scalar,
const unsigned int len
);
template <typename T>
__global__ void Kernels::vec_scalar_mul(
const T* __restrict__ d_src,
T* __restrict__ d_out,
const T* __restrict__ d_scalar,
const unsigned int len
) {
int tid = blockDim.x * blockIdx.x + threadIdx.x;
if (tid >= len) {
@@ -114,64 +179,98 @@ __global__ void Kernels::vec_scalar_mul(
d_out[tid] = d_src[tid] * *d_scalar;
}
__global__ void Kernels::vec_exp(
template __global__ void Kernels::vec_exp<float>(
const float* __restrict__ src,
float* __restrict__ dst,
const unsigned int len
);
template <typename T>
__global__ void Kernels::vec_exp(
const T* __restrict__ src,
T* __restrict__ dst,
const unsigned int len
) {
int stride = gridDim.x * blockDim.x;
int tid = blockDim.x * blockIdx.x + threadIdx.x;
for (int i = tid; i < len; i += stride) {
// TODO: separate implementation for __half
dst[i] = expf(src[i]);
}
}
__global__ void Kernels::vec_sqrt(
template __global__ void Kernels::vec_sqrt<float>(
const float* __restrict__ src,
float* __restrict__ dst,
const unsigned int len
);
template <typename T>
__global__ void Kernels::vec_sqrt(
const T* __restrict__ src,
T* __restrict__ dst,
const unsigned int len
) {
int stride = gridDim.x * blockDim.x;
int tid = blockDim.x * blockIdx.x + threadIdx.x;
int tid = blockDim.x * blockIdx.x + threadIdx.x;
for (int i = tid; i < len; i += stride) {
// TODO: separate implementation for __half
dst[i] = sqrtf(src[i]);
}
}
__global__ void Kernels::vec_scale(
template __global__ void Kernels::vec_scale<float>(
const float* __restrict__ src,
float* __restrict__ dst,
const float* __restrict__ scale,
const float* epsilon,
const unsigned int len
);
template <typename T>
__global__ void Kernels::vec_scale(
const T* __restrict__ src,
T* __restrict__ dst,
const T* __restrict__ scale,
const T* epsilon,
const unsigned int len
) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < len) {
// TODO: separate implementation for __half
float inv_std = rsqrtf(*scale + *epsilon);
dst[idx] = src[idx] * inv_std;
}
}
__global__ void Kernels::max_reduce(
template __global__ void Kernels::max_reduce<float>(
const float* __restrict__ d_vector,
float* __restrict__ d_output,
const unsigned int len
);
template <typename T>
__global__ void Kernels::max_reduce(
const T* __restrict__ d_vector,
T* __restrict__ d_output,
const unsigned int len
) {
__shared__ float shared_max[BLOCK_SIZE];
__shared__ T shared_max[BLOCK_SIZE];
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < len) {
shared_max[threadIdx.x] = d_vector[i];
} else {
shared_max[threadIdx.x] = -INFINITY;
}
}
__syncthreads();
for (int s = blockDim.x / 2; s > 0; s >>= 1) {
if (threadIdx.x < s) {
// TODO: separate implementation for __half
shared_max[threadIdx.x] = fmaxf(shared_max[threadIdx.x], shared_max[threadIdx.x + s]);
}
__syncthreads();
@@ -182,18 +281,25 @@ __global__ void Kernels::max_reduce(
}
}
__global__ void Kernels::sum_reduce(
template __global__ void Kernels::sum_reduce<float>(
const float* __restrict__ d_vector,
float* __restrict__ d_output,
const unsigned int len
);
template <typename T>
__global__ void Kernels::sum_reduce(
const T* __restrict__ d_vector,
T* __restrict__ d_output,
const unsigned int len
) {
__shared__ float partial_sum[BLOCK_SIZE];
__shared__ T partial_sum[BLOCK_SIZE];
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < len) {
partial_sum[threadIdx.x] = d_vector[i];
} else {
partial_sum[threadIdx.x] = 0.0f;
partial_sum[threadIdx.x] = static_cast<T>(0);
}
__syncthreads();
@@ -208,4 +314,4 @@ __global__ void Kernels::sum_reduce(
if (threadIdx.x == 0) {
d_output[blockIdx.x] = partial_sum[0];
}
}
}

View File

@@ -1,10 +1,9 @@
#include "cuda_helper.cuh"
#include "layer.hpp"
#include "pool.cuh"
#include "backend/cuda/kernels/pool.cuh"
using namespace CUDANet;
__global__ void Kernels::max_pool(
template __global__ void Kernels::max_pool<float>(
const float* __restrict__ d_input,
float* __restrict__ d_output,
const Shape input_shape,
@@ -12,6 +11,17 @@ __global__ void Kernels::max_pool(
const Shape pool_shape,
const Shape stride_shape,
const Shape padding_shape
);
template <typename T>
__global__ void Kernels::max_pool(
const T* __restrict__ d_input,
T* __restrict__ d_output,
const Shape input_shape,
const Shape output_shape,
const Shape pool_shape,
const Shape stride_shape,
const Shape padding_shape
) {
int j = blockDim.x * blockIdx.x + threadIdx.x;
int i = blockDim.y * blockIdx.y + threadIdx.y;
@@ -21,7 +31,7 @@ __global__ void Kernels::max_pool(
return;
}
float max = 0.0f;
T max = static_cast<T>(0);
for (int k = 0; k < pool_shape[0]; k++) {
for (int l = 0; l < pool_shape[1]; l++) {
@@ -44,7 +54,7 @@ __global__ void Kernels::max_pool(
max;
}
__global__ void Kernels::avg_pool(
template __global__ void Kernels::avg_pool<float>(
const float* __restrict__ d_input,
float* __restrict__ d_output,
const Shape input_shape,
@@ -52,6 +62,17 @@ __global__ void Kernels::avg_pool(
const Shape pool_shape,
const Shape stride_shape,
const Shape padding_shape
);
template <typename T>
__global__ void Kernels::avg_pool(
const T* __restrict__ d_input,
T* __restrict__ d_output,
const Shape input_shape,
const Shape output_shape,
const Shape pool_shape,
const Shape stride_shape,
const Shape padding_shape
) {
int j = blockDim.x * blockIdx.x + threadIdx.x;
int i = blockDim.y * blockIdx.y + threadIdx.y;
@@ -61,7 +82,7 @@ __global__ void Kernels::avg_pool(
return;
}
float sum = 0.0f;
T sum = static_cast<T>(0);
for (int k = 0; k < pool_shape[0]; k++) {
for (int l = 0; l < pool_shape[1]; l++) {

View File

@@ -1,30 +1,76 @@
#include "backend/cuda.cuh"
#include "kernels/activation_functions.cuh"
#include "kernels/convolution.cuh"
#include "kernels/matmul.cuh"
#include "kernels/pool.cuh"
#include "backend/cuda/cuda.cuh"
#include "backend/cuda/kernels/activation_functions.cuh"
#include "backend/cuda/kernels/convolution.cuh"
#include "backend/cuda/kernels/matmul.cuh"
#include "backend/cuda/kernels/pool.cuh"
using namespace CUDANet::Backend;
using namespace CUDANet::Backends;
void CUDA::relu(Tensor& tensor) {
switch (tensor.get_dtype()) {
case DType::FLOAT32:
relu_impl<float>(tensor);
break;
default:
throw std::runtime_error("Unsupported dtype");
break;
}
}
template void CUDA::relu_impl<float>(Tensor& tensor);
template <typename T>
void CUDA::relu_impl(Tensor& tensor) {
int gridSize = (tensor.numel() + BLOCK_SIZE - 1) / BLOCK_SIZE;
Kernels::relu<<<gridSize, BLOCK_SIZE>>>(
tensor.data<float>(), tensor.data<float>(), tensor.numel()
static_cast<T*>(tensor.device_ptr()), static_cast<T*>(tensor.device_ptr()), tensor.numel()
);
CUDA_CHECK(cudaGetLastError());
CUDA_CHECK(cudaDeviceSynchronize());
}
void CUDA::sigmoid(Tensor& tensor) {
void CUDA::sigmoid(CUDANet::Tensor& tensor) {
switch (tensor.get_dtype()) {
case DType::FLOAT32:
sigmoid_impl<float>(tensor);
break;
default:
throw std::runtime_error("Unsupported dtype");
break;
}
}
template void CUDA::sigmoid_impl<float>(Tensor& tensor);
template <typename T>
void CUDA::sigmoid_impl(CUDANet::Tensor& tensor) {
int gridSize = (tensor.numel() + BLOCK_SIZE - 1) / BLOCK_SIZE;
Kernels::sigmoid<<<gridSize, BLOCK_SIZE>>>(
tensor.data<float>(), tensor.data<float>(), tensor.numel()
static_cast<T*>(tensor.device_ptr()), static_cast<T*>(tensor.device_ptr()), tensor.numel()
);
CUDA_CHECK(cudaGetLastError());
CUDA_CHECK(cudaDeviceSynchronize());
}
void CUDA::softmax(Tensor& tensor, Tensor& temp_max, Tensor& temp_sum) {
switch (tensor.get_dtype()) {
case DType::FLOAT32:
softmax_impl<float>(tensor, temp_max, temp_sum);
break;
default:
throw std::runtime_error("Unsupported dtype");
break;
}
}
template void
CUDA::softmax_impl<float>(Tensor& tensor, Tensor& temp_max, Tensor& temp_sum);
template <typename T>
void CUDA::softmax_impl(Tensor& tensor, Tensor& temp_max, Tensor& temp_sum) {
int gridSize = (tensor.numel() + BLOCK_SIZE - 1) / BLOCK_SIZE;
// Find max value
@@ -32,14 +78,13 @@ void CUDA::softmax(Tensor& tensor, Tensor& temp_max, Tensor& temp_sum) {
// Subtract max value to improve numerical stability
Kernels::vec_scalar_sub<<<gridSize, BLOCK_SIZE>>>(
tensor.data<float>(), tensor.data<float>(), temp_max.data<float>(),
tensor.numel()
static_cast<T*>(tensor.device_ptr()), static_cast<T*>(tensor.device_ptr()), static_cast<T*>(temp_max.device_ptr()), tensor.numel()
);
CUDA_CHECK(cudaGetLastError());
// Compute exponentials
Kernels::vec_exp<<<gridSize, BLOCK_SIZE>>>(
tensor.data<float>(), tensor.data<float>(), tensor.numel()
static_cast<T*>(tensor.device_ptr()), static_cast<T*>(tensor.device_ptr()), tensor.numel()
);
CUDA_CHECK(cudaGetLastError());
@@ -47,8 +92,7 @@ void CUDA::softmax(Tensor& tensor, Tensor& temp_max, Tensor& temp_sum) {
sum(tensor, temp_sum);
Kernels::vec_scalar_div<<<gridSize, BLOCK_SIZE>>>(
tensor.data<float>(), tensor.data<float>(), temp_sum.data<float>(),
tensor.numel()
static_cast<T*>(tensor.device_ptr()), static_cast<T*>(tensor.device_ptr()), static_cast<T*>(temp_sum.device_ptr()), tensor.numel()
);
CUDA_CHECK(cudaGetLastError());
CUDA_CHECK(cudaDeviceSynchronize());
@@ -61,20 +105,50 @@ CUDANet::Tensor& CUDA::dense(
CUDANet::Tensor& output,
const size_t input_size,
const size_t output_size
) {
switch (input.get_dtype()) {
case DType::FLOAT32:
return dense_impl<float>(
weights, biases, input, output, input_size, output_size
);
break;
default:
throw std::runtime_error("Unsupported dtype");
break;
}
}
template CUDANet::Tensor& CUDA::dense_impl<float>(
const CUDANet::Tensor& weights,
const CUDANet::Tensor& biases,
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
const size_t input_size,
const size_t output_size
);
template <typename T>
CUDANet::Tensor& CUDA::dense_impl(
const CUDANet::Tensor& weights,
const CUDANet::Tensor& biases,
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
const size_t input_size,
const size_t output_size
) {
auto forwardGridSize =
(std::max(input_size, output_size) + BLOCK_SIZE - 1) / BLOCK_SIZE;
auto biasGridSize = (output_size + BLOCK_SIZE - 1) / BLOCK_SIZE;
Kernels::mat_vec_mul<<<forwardGridSize, BLOCK_SIZE>>>(
weights.data<float>(), input.data<float>(), output.data<float>(),
input_size, output_size
static_cast<const T*>(weights.device_ptr()), static_cast<const T*>(input.device_ptr()), static_cast<T*>(output.device_ptr()), input_size,
output_size
);
CUDA_CHECK(cudaGetLastError());
Kernels::vec_vec_add<<<biasGridSize, BLOCK_SIZE>>>(
biases.data<float>(), output.data<float>(), output.data<float>(),
output_size
static_cast<const T*>(biases.device_ptr()), static_cast<T*>(output.device_ptr()), static_cast<T*>(output.device_ptr()), output_size
);
CUDA_CHECK(cudaGetLastError());
CUDA_CHECK(cudaDeviceSynchronize());
@@ -92,6 +166,44 @@ CUDANet::Tensor& CUDA::conv2d(
const CUDANet::Shape kernel_shape,
const CUDANet::Shape stride_shape,
const CUDANet::Shape out_shape
) {
switch (input.get_dtype()) {
case DType::FLOAT32:
return conv2d_impl<float>(
weights, biases, input, output, in_shape, padding_shape,
kernel_shape, stride_shape, out_shape
);
break;
default:
throw std::runtime_error("Unsupported dtype");
break;
}
}
template CUDANet::Tensor& CUDA::conv2d_impl<float>(
const CUDANet::Tensor& weights,
const CUDANet::Tensor& biases,
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
const CUDANet::Shape in_shape,
const CUDANet::Shape padding_shape,
const CUDANet::Shape kernel_shape,
const CUDANet::Shape stride_shape,
const CUDANet::Shape out_shape
);
template <typename T>
CUDANet::Tensor& CUDA::conv2d_impl(
const CUDANet::Tensor& weights,
const CUDANet::Tensor& biases,
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
const CUDANet::Shape in_shape,
const CUDANet::Shape padding_shape,
const CUDANet::Shape kernel_shape,
const CUDANet::Shape stride_shape,
const CUDANet::Shape out_shape
) {
dim3 block(8, 8, 8);
dim3 grid(
@@ -101,9 +213,8 @@ CUDANet::Tensor& CUDA::conv2d(
);
Kernels::convolution<<<grid, block>>>(
input.data<float>(), weights.data<float>(), biases.data<float>(),
output.data<float>(), in_shape, padding_shape, kernel_shape,
stride_shape, out_shape
static_cast<const T*>(input.device_ptr()), static_cast<const T*>(weights.device_ptr()), static_cast<const T*>(biases.device_ptr()), static_cast<T*>(output.device_ptr()),
in_shape, padding_shape, kernel_shape, stride_shape, out_shape
);
CUDA_CHECK(cudaGetLastError());
CUDA_CHECK(cudaDeviceSynchronize());
@@ -113,12 +224,46 @@ CUDANet::Tensor& CUDA::conv2d(
CUDANet::Tensor& CUDA::max_pool2d(
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
CUDANet::Shape input_shape,
CUDANet::Shape pool_shape,
CUDANet::Shape stride_shape,
CUDANet::Shape padding_shape,
CUDANet::Shape output_shape
CUDANet::Tensor& output,
CUDANet::Shape input_shape,
CUDANet::Shape pool_shape,
CUDANet::Shape stride_shape,
CUDANet::Shape padding_shape,
CUDANet::Shape output_shape
) {
switch (input.get_dtype()) {
case DType::FLOAT32:
return max_pool2d_impl<float>(
input, output, input_shape, pool_shape, stride_shape,
padding_shape, output_shape
);
break;
default:
throw std::runtime_error("Unsupported dtype");
break;
}
}
template CUDANet::Tensor& CUDA::max_pool2d_impl<float>(
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
CUDANet::Shape input_shape,
CUDANet::Shape pool_shape,
CUDANet::Shape stride_shape,
CUDANet::Shape padding_shape,
CUDANet::Shape output_shape
);
template <typename T>
CUDANet::Tensor& CUDA::max_pool2d_impl(
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
CUDANet::Shape input_shape,
CUDANet::Shape pool_shape,
CUDANet::Shape stride_shape,
CUDANet::Shape padding_shape,
CUDANet::Shape output_shape
) {
dim3 block(8, 8, 8);
dim3 grid(
@@ -128,8 +273,8 @@ CUDANet::Tensor& CUDA::max_pool2d(
);
Kernels::max_pool<<<grid, block>>>(
input.data<float>(), output.data<float>(), input_shape, output_shape, pool_shape,
stride_shape, padding_shape
static_cast<const T*>(input.device_ptr()), static_cast<T*>(output.device_ptr()), input_shape, output_shape,
pool_shape, stride_shape, padding_shape
);
CUDA_CHECK(cudaGetLastError());
CUDA_CHECK(cudaDeviceSynchronize());
@@ -139,12 +284,46 @@ CUDANet::Tensor& CUDA::max_pool2d(
CUDANet::Tensor& CUDA::avg_pool2d(
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
CUDANet::Shape input_shape,
CUDANet::Shape pool_shape,
CUDANet::Shape stride_shape,
CUDANet::Shape padding_shape,
CUDANet::Shape output_shape
CUDANet::Tensor& output,
CUDANet::Shape input_shape,
CUDANet::Shape pool_shape,
CUDANet::Shape stride_shape,
CUDANet::Shape padding_shape,
CUDANet::Shape output_shape
) {
switch (input.get_dtype()) {
case DType::FLOAT32:
return avg_pool2d_impl<float>(
input, output, input_shape, pool_shape, stride_shape,
padding_shape, output_shape
);
break;
default:
throw std::runtime_error("Unsupported dtype");
break;
}
}
template CUDANet::Tensor& CUDA::avg_pool2d_impl<float>(
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
CUDANet::Shape input_shape,
CUDANet::Shape pool_shape,
CUDANet::Shape stride_shape,
CUDANet::Shape padding_shape,
CUDANet::Shape output_shape
);
template <typename T>
CUDANet::Tensor& CUDA::avg_pool2d_impl(
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
CUDANet::Shape input_shape,
CUDANet::Shape pool_shape,
CUDANet::Shape stride_shape,
CUDANet::Shape padding_shape,
CUDANet::Shape output_shape
) {
dim3 block(8, 8, 8);
dim3 grid(
@@ -154,8 +333,8 @@ CUDANet::Tensor& CUDA::avg_pool2d(
);
Kernels::avg_pool<<<grid, block>>>(
input.data<float>(), output.data<float>(), input_shape, output_shape, pool_shape,
stride_shape, padding_shape
static_cast<const T*>(input.device_ptr()), static_cast<T*>(output.device_ptr()), input_shape, output_shape,
pool_shape, stride_shape, padding_shape
);
CUDA_CHECK(cudaGetLastError());
CUDA_CHECK(cudaDeviceSynchronize());
@@ -165,48 +344,84 @@ CUDANet::Tensor& CUDA::avg_pool2d(
CUDANet::Tensor& CUDA::batch_norm(
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
CUDANet::Shape input_shape,
CUDANet::Tensor& weights,
CUDANet::Tensor& biases,
CUDANet::Tensor& running_mean,
CUDANet::Tensor& running_var,
CUDANet::Tensor& epsilon
CUDANet::Tensor& output,
CUDANet::Shape input_shape,
CUDANet::Tensor& weights,
CUDANet::Tensor& biases,
CUDANet::Tensor& running_mean,
CUDANet::Tensor& running_var,
CUDANet::Tensor& epsilon
) {
switch (input.get_dtype()) {
case DType::FLOAT32:
return batch_norm_impl<float>(
input, output, input_shape, weights, biases, running_mean,
running_var, epsilon
);
break;
default:
throw std::runtime_error("Unsupported dtype");
break;
}
}
template CUDANet::Tensor& CUDA::batch_norm_impl<float>(
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
CUDANet::Shape input_shape,
CUDANet::Tensor& weights,
CUDANet::Tensor& biases,
CUDANet::Tensor& running_mean,
CUDANet::Tensor& running_var,
CUDANet::Tensor& epsilon
);
template <typename T>
CUDANet::Tensor& CUDA::batch_norm_impl(
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
CUDANet::Shape input_shape,
CUDANet::Tensor& weights,
CUDANet::Tensor& biases,
CUDANet::Tensor& running_mean,
CUDANet::Tensor& running_var,
CUDANet::Tensor& epsilon
) {
auto gridSize =
(input_shape[0] * input_shape[1] + BLOCK_SIZE - 1) / BLOCK_SIZE;
for (int i = 0; i < input_shape[2]; i++) {
// Subtract mean from input
Kernels::vec_scalar_sub<<<gridSize, BLOCK_SIZE>>>(
input.data<float>() + i * input_shape[0] * input_shape[1],
output.data<float>() + i * input_shape[0] * input_shape[1],
&running_mean.data<float>()[i], input_shape[0] * input_shape[1]
static_cast<const T*>(input.device_ptr()) + i * input_shape[0] * input_shape[1],
static_cast<T*>(output.device_ptr()) + i * input_shape[0] * input_shape[1],
&static_cast<T*>(running_mean.device_ptr())[i], input_shape[0] * input_shape[1]
);
CUDA_CHECK(cudaGetLastError());
// Divide by sqrt(running_var + epsilon)
Kernels::vec_scale<<<gridSize, BLOCK_SIZE>>>(
output.data<float>() + i * input_shape[0] * input_shape[1],
output.data<float>() + i * input_shape[0] * input_shape[1],
&running_var.data<float>()[i], epsilon.data<float>(), input_shape[0] * input_shape[1]
static_cast<T*>(output.device_ptr()) + i * input_shape[0] * input_shape[1],
static_cast<T*>(output.device_ptr()) + i * input_shape[0] * input_shape[1],
&static_cast<T*>(running_var.device_ptr())[i], static_cast<T*>(epsilon.device_ptr()),
input_shape[0] * input_shape[1]
);
CUDA_CHECK(cudaGetLastError());
// Multiply by weights
Kernels::vec_scalar_mul<<<gridSize, BLOCK_SIZE>>>(
output.data<float>() + i * input_shape[0] * input_shape[1],
output.data<float>() + i * input_shape[0] * input_shape[1], &weights.data<float>()[i],
input_shape[0] * input_shape[1]
static_cast<T*>(output.device_ptr()) + i * input_shape[0] * input_shape[1],
static_cast<T*>(output.device_ptr()) + i * input_shape[0] * input_shape[1],
&static_cast<T*>(weights.device_ptr())[i], input_shape[0] * input_shape[1]
);
CUDA_CHECK(cudaGetLastError());
// Add biases
Kernels::vec_scalar_add<<<gridSize, BLOCK_SIZE>>>(
output.data<float>() + i * input_shape[0] * input_shape[1],
output.data<float>() + i * input_shape[0] * input_shape[1], &biases.data<float>()[i],
input_shape[0] * input_shape[1]
static_cast<T*>(output.device_ptr()) + i * input_shape[0] * input_shape[1],
static_cast<T*>(output.device_ptr()) + i * input_shape[0] * input_shape[1],
&static_cast<T*>(biases.device_ptr())[i], input_shape[0] * input_shape[1]
);
CUDA_CHECK(cudaGetLastError());
}
@@ -218,14 +433,39 @@ CUDANet::Tensor& CUDA::concat(
CUDANet::Tensor& input_a,
CUDANet::Tensor& input_b,
CUDANet::Tensor& output
) {
switch (input_a.get_dtype()) {
case DType::FLOAT32:
return concat_impl<float>(
input_a, input_b, output
);
break;
default:
throw std::runtime_error("Unsupported dtype");
break;
}
}
template CUDANet::Tensor& CUDA::concat_impl<float>(
CUDANet::Tensor& input_a,
CUDANet::Tensor& input_b,
CUDANet::Tensor& output
);
template <typename T>
CUDANet::Tensor& CUDA::concat_impl(
CUDANet::Tensor& input_a,
CUDANet::Tensor& input_b,
CUDANet::Tensor& output
) {
CUDA_CHECK(cudaMemcpy(
output.data<float>(), input_a.data<float>(), input_a.size(),
static_cast<T*>(output.device_ptr()), static_cast<const T*>(input_a.device_ptr()), input_a.size(),
cudaMemcpyDeviceToDevice
));
CUDA_CHECK(cudaMemcpy(
output.data<float>() + input_a.numel(), input_b.data<float>(), input_b.size(),
static_cast<T*>(output.device_ptr()) + input_a.numel(), static_cast<const T*>(input_b.device_ptr()), input_b.size(),
cudaMemcpyDeviceToDevice
));
@@ -239,11 +479,36 @@ CUDANet::Tensor& CUDA::add(
CUDANet::Tensor& input_a,
CUDANet::Tensor& input_b,
CUDANet::Tensor& output
) {
switch (input_a.get_dtype()) {
case DType::FLOAT32:
return add_impl<float>(
input_a, input_b, output
);
break;
default:
throw std::runtime_error("Unsupported dtype");
break;
}
}
template CUDANet::Tensor& CUDA::add_impl<float>(
CUDANet::Tensor& input_a,
CUDANet::Tensor& input_b,
CUDANet::Tensor& output
);
template <typename T>
CUDANet::Tensor& CUDA::add_impl(
CUDANet::Tensor& input_a,
CUDANet::Tensor& input_b,
CUDANet::Tensor& output
) {
auto gridSize = (input_a.numel() + BLOCK_SIZE - 1) / BLOCK_SIZE;
Kernels::vec_vec_add<<<gridSize, BLOCK_SIZE>>>(
input_a.data<float>(), input_b.data<float>(), output.data<float>(), input_a.numel()
static_cast<const T*>(input_a.device_ptr()), static_cast<const T*>(input_b.device_ptr()), static_cast<T*>(output.device_ptr()), input_a.numel()
);
CUDA_CHECK(cudaGetLastError());
CUDA_CHECK(cudaDeviceSynchronize());

View File

@@ -1,17 +1,32 @@
#include <iostream>
#include "backend.hpp"
#include "backend/cuda.cuh"
#include "kernels/matmul.cuh"
#include "backend/cuda/cuda.cuh"
#include "backend/cuda/kernels/matmul.cuh"
using namespace CUDANet::Backend;
using namespace CUDANet::Backends;
void CUDA::print(const CUDANet::Tensor &input) {
switch (input.get_dtype()) {
case DType::FLOAT32:
print_impl<float>(input);
break;
default:
throw std::runtime_error("Unsupported dtype");
break;
}
}
template void CUDA::print_impl<float> (const CUDANet::Tensor &input);
template <typename T>
void CUDA::print_impl(const CUDANet::Tensor &input) {
auto length = input.numel();
std::vector<float> h_vec(input.numel());
std::vector<T> h_vec(input.numel());
CUDA_CHECK(cudaMemcpy(
h_vec.data(), input.data<float>(), sizeof(float) * length, cudaMemcpyDeviceToHost
h_vec.data(), static_cast<const T*>(input.device_ptr()), sizeof(T) * length, cudaMemcpyDeviceToHost
));
for (int i = 0; i < length; ++i) {
@@ -26,27 +41,71 @@ void CUDA::zero(CUDANet::Tensor &input) {
}
void CUDA::fill(CUDANet::Tensor &input, int value) {
CUDA_CHECK(cudaMemset(input.data<float>(), value, sizeof(float) * input.numel()));
switch (input.get_dtype()) {
case DType::FLOAT32:
fill_impl<float>(input, value);
break;
default:
throw std::runtime_error("Unsupported dtype");
break;
}
}
template void CUDA::fill_impl<float>(CUDANet::Tensor &input, int value);
template <typename T>
void CUDA::fill_impl(CUDANet::Tensor &input, int value) {
CUDA_CHECK(cudaMemset(static_cast<T*>(input.device_ptr()), value, sizeof(T) * input.numel()));
}
void CUDA::copy_to_device(CUDANet::Tensor &tensor, void *data, size_t size) {
CUDA_CHECK(cudaMemcpy(tensor.data<float>(), data, size, cudaMemcpyHostToDevice));
switch (tensor.get_dtype()) {
case DType::FLOAT32:
copy_to_device_impl<float>(tensor, data, size);
break;
default:
throw std::runtime_error("Unsupported dtype");
break;
}
}
template void CUDA::copy_to_device_impl<float>(CUDANet::Tensor &tensor, void *data, size_t size);
template <typename T>
void CUDA::copy_to_device_impl(CUDANet::Tensor &tensor, void *data, size_t size) {
CUDA_CHECK(cudaMemcpy(static_cast<T*>(tensor.device_ptr()), data, size, cudaMemcpyHostToDevice));
}
void CUDA::sum(const CUDANet::Tensor &input, CUDANet::Tensor &sum) {
switch (input.get_dtype()) {
case DType::FLOAT32:
sum_impl<float>(input, sum);
break;
default:
throw std::runtime_error("Unsupported dtype");
break;
}
}
template void CUDA::sum_impl<float>(const CUDANet::Tensor &input, CUDANet::Tensor &sum);
template <typename T>
void CUDA::sum_impl(const CUDANet::Tensor &input, CUDANet::Tensor &sum) {
auto length = input.numel();
const int gridSize = ( + BLOCK_SIZE - 1) / BLOCK_SIZE;
const int gridSize = (length + BLOCK_SIZE - 1) / BLOCK_SIZE;
CUDANet::Kernels::sum_reduce<<<gridSize, BLOCK_SIZE>>>(
input.data<float>(), sum.data<float>(), length
static_cast<const T*>(input.device_ptr()), static_cast<T*>(sum.device_ptr()), length
);
CUDA_CHECK(cudaGetLastError());
int remaining = gridSize;
while (remaining > 1) {
int blocks_needed = (remaining + BLOCK_SIZE - 1) / BLOCK_SIZE;
CUDANet::Kernels::sum_reduce<<<blocks_needed, BLOCK_SIZE>>>(sum.data<float>(), sum.data<float>(), remaining);
CUDANet::Kernels::sum_reduce<<<blocks_needed, BLOCK_SIZE>>>(static_cast<T*>(sum.device_ptr()), static_cast<T*>(sum.device_ptr()), remaining);
CUDA_CHECK(cudaGetLastError());
remaining = blocks_needed;
@@ -54,17 +113,32 @@ void CUDA::sum(const CUDANet::Tensor &input, CUDANet::Tensor &sum) {
}
void CUDA::max(const CUDANet::Tensor &input, CUDANet::Tensor &max) {
switch (input.get_dtype()) {
case DType::FLOAT32:
max_impl<float>(input, max);
break;
default:
throw std::runtime_error("Unsupported dtype");
break;
}
}
template void CUDA::max_impl<float>(const CUDANet::Tensor &input, CUDANet::Tensor &max);
template <typename T>
void CUDA::max_impl(const CUDANet::Tensor &input, CUDANet::Tensor &max) {
auto length = input.numel();
const int grid_size = (length + BLOCK_SIZE - 1) / BLOCK_SIZE;
Kernels::max_reduce<<<grid_size, BLOCK_SIZE>>>(input.data<float>(), max.data<float>(), length);
Kernels::max_reduce<<<grid_size, BLOCK_SIZE>>>(static_cast<const T*>(input.device_ptr()), static_cast<T*>(max.device_ptr()), length);
CUDA_CHECK(cudaGetLastError());
int remaining = grid_size;
while (remaining > 1) {
int blocks_needed = (remaining + BLOCK_SIZE - 1) / BLOCK_SIZE;
CUDANet::Kernels::max_reduce<<<blocks_needed, BLOCK_SIZE>>>(max.data<float>(), max.data<float>(), remaining);
CUDANet::Kernels::max_reduce<<<blocks_needed, BLOCK_SIZE>>>(static_cast<T*>(max.device_ptr()), static_cast<T*>(max.device_ptr()), remaining);
CUDA_CHECK(cudaGetLastError());
remaining = blocks_needed;

View File

@@ -2,40 +2,57 @@
#include <stdexcept>
#include <vector>
#include "activation.hpp"
#include "layers/activation.hpp"
#include "tensor.hpp"
using namespace CUDANet::Layers;
Activation::Activation(CUDANet::Backend* backend, ActivationType activation, const CUDANet::Shape &shape)
: backend(backend), activationType(activation), shape(shape) {
Activation::Activation(
ActivationType activation,
const CUDANet::Shape& shape,
CUDANet::Backend* backend
)
: Activation(activation, shape, backend->get_default_dtype(), backend) {}
Activation::Activation(
ActivationType activation,
const CUDANet::Shape& shape,
CUDANet::DType dtype,
CUDANet::Backend* backend
)
: activation_type(activation),
shape(shape),
backend(backend) {
this->dtype = dtype;
if (shape.size() != 1) {
throw std::runtime_error(std::format("Invalid shape. Expected [1], got {}", shape));
throw InvalidShapeException("input", 1, shape.size());
}
auto length = shape[0];
if (activationType == SOFTMAX) {
softmax_sum = CUDANet::Tensor({static_cast<size_t>(length)}, CUDANet::DType::FLOAT32, backend);
tensor_max = CUDANet::Tensor({static_cast<size_t>(length)}, CUDANet::DType::FLOAT32, backend);
if (activation_type == SOFTMAX) {
softmax_sum =
CUDANet::Tensor({static_cast<size_t>(length)}, dtype, backend);
tensor_max =
CUDANet::Tensor({static_cast<size_t>(length)}, dtype, backend);
}
}
CUDANet::Tensor& Activation::forward(CUDANet::Tensor &input) {
switch (activationType)
{
case ActivationType::SIGMOID:
backend->sigmoid(input);
break;
case ActivationType::RELU:
backend->relu(input);
break;
case ActivationType::SOFTMAX:
backend->softmax(input, tensor_max, softmax_sum);
break;
default:
break;
CUDANet::Tensor& Activation::forward(CUDANet::Tensor& input) {
switch (activation_type) {
case ActivationType::SIGMOID:
backend->sigmoid(input);
break;
case ActivationType::RELU:
backend->relu(input);
break;
case ActivationType::SOFTMAX:
backend->softmax(input, tensor_max, softmax_sum);
break;
default:
break;
}
return input;
@@ -57,10 +74,14 @@ size_t Activation::output_size() {
return shape[0];
}
void Activation::set_weights(void *input) {}
void Activation::set_weights(void* input) {}
CUDANet::Tensor& Activation::get_weights() {}
size_t Activation::get_weights_size() {
return 0;
}
void Activation::set_biases(void *input) {}
void Activation::set_biases(void* input) {}
CUDANet::Tensor& Activation::get_biases() {}
size_t Activation::get_biases_size() {
return 0;
}

View File

@@ -1,9 +1,13 @@
#include "add.hpp"
#include "layers/add.hpp"
using namespace CUDANet::Layers;
Add::Add(CUDANet::Shape a_shape, CUDANet::Shape b_shape, CUDANet::Backend* backend) : backend(backend) {
Add::Add(CUDANet::Shape a_shape, CUDANet::Shape b_shape, CUDANet::Backend* backend)
: Add(a_shape, b_shape, backend->get_default_dtype(), backend) {}
Add::Add(CUDANet::Shape a_shape, CUDANet::Shape b_shape, CUDANet::DType dtype, CUDANet::Backend* backend)
: backend(backend), dtype(dtype) {
if (a_shape != b_shape) {
throw InvalidShapeException(
"Add requires matching dimensions", a_shape, b_shape
@@ -11,7 +15,7 @@ Add::Add(CUDANet::Shape a_shape, CUDANet::Shape b_shape, CUDANet::Backend* backe
}
out_shape = a_shape;
output = CUDANet::Tensor(out_shape, CUDANet::DType::FLOAT32, backend);
output = CUDANet::Tensor(out_shape, dtype, backend);
}
Add::~Add() {}

View File

@@ -1,7 +1,7 @@
#include <format>
#include <stdexcept>
#include "avg_pool.hpp"
#include <format>
#include "layers/avg_pool.hpp"
using namespace CUDANet::Layers;
@@ -11,6 +11,16 @@ AvgPool2d::AvgPool2d(
CUDANet::Shape stride_shape,
CUDANet::Shape padding_shape,
CUDANet::Backend* backend
)
: AvgPool2d(input_shape, pool_shape, stride_shape, padding_shape, backend->get_default_dtype(), backend) {}
AvgPool2d::AvgPool2d(
CUDANet::Shape input_shape,
CUDANet::Shape pool_shape,
CUDANet::Shape stride_shape,
CUDANet::Shape padding_shape,
CUDANet::DType dtype,
CUDANet::Backend* backend
)
: in_shape(input_shape),
pool_shape(pool_shape),
@@ -33,6 +43,8 @@ AvgPool2d::AvgPool2d(
throw InvalidShapeException("padding", 2, padding_shape.size());
}
this->dtype = dtype;
out_shape = {
(in_shape[0] + 2 * padding_shape[0] - pool_shape[0]) / stride_shape[0] +
1,
@@ -43,7 +55,7 @@ AvgPool2d::AvgPool2d(
output = CUDANet::Tensor(
Shape{out_shape[0] * out_shape[1] * out_shape[2]},
CUDANet::DType::FLOAT32, backend
dtype, backend
);
}
@@ -72,26 +84,38 @@ CUDANet::Shape AvgPool2d::output_shape() {
}
size_t AvgPool2d::input_size() {
return sizeof(float) * in_shape[0] * in_shape[1] * in_shape[2];
return dtype_size(dtype) * in_shape[0] * in_shape[1] * in_shape[2];
}
size_t AvgPool2d::output_size() {
return sizeof(float) * out_shape[0] * out_shape[1] * out_shape[2];
return dtype_size(dtype) * out_shape[0] * out_shape[1] * out_shape[2];
}
void AvgPool2d::set_weights(void* input) {}
CUDANet::Tensor& AvgPool2d::get_weights() {}
size_t AvgPool2d::get_weights_size() {
return 0;
}
void AvgPool2d::set_biases(void* input) {}
CUDANet::Tensor& AvgPool2d::get_biases() {}
size_t AvgPool2d::get_biases_size() {
return 0;
}
AdaptiveAvgPool2d::AdaptiveAvgPool2d(
CUDANet::Shape input_shape,
CUDANet::Shape output_shape,
CUDANet::Backend *backend
)
: AdaptiveAvgPool2d(input_shape, output_shape, backend->get_default_dtype(), backend) {}
AdaptiveAvgPool2d::AdaptiveAvgPool2d(
CUDANet::Shape input_shape,
CUDANet::Shape output_shape,
CUDANet::DType dtype,
CUDANet::Backend *backend
)
: AvgPool2d(
input_shape,
@@ -110,12 +134,13 @@ AdaptiveAvgPool2d::AdaptiveAvgPool2d(
(input_shape[0] - (output_shape[0] - 1) * (input_shape[0] / output_shape[0]) - 1) / 2,
(input_shape[1] - (output_shape[1] - 1) * (input_shape[1] / output_shape[1]) - 1) / 2
},
dtype,
backend
) {
out_shape = output_shape;
output = CUDANet::Tensor(
Shape{out_shape[0] * out_shape[1] * out_shape[2]},
CUDANet::DType::FLOAT32, backend
dtype, backend
);
}

View File

@@ -1,9 +1,7 @@
#include "batch_norm.hpp"
#include <stdexcept>
#include <vector>
#include "activation.hpp"
#include "layers/batch_norm.hpp"
#include "layer.hpp"
using namespace CUDANet::Layers;
@@ -12,6 +10,14 @@ BatchNorm2d::BatchNorm2d(
CUDANet::Shape input_shape,
float eps,
CUDANet::Backend *backend
)
: BatchNorm2d(input_shape, eps, backend->get_default_dtype(), backend) {}
BatchNorm2d::BatchNorm2d(
CUDANet::Shape input_shape,
float eps,
CUDANet::DType dtype,
CUDANet::Backend *backend
)
: in_shape(input_shape), backend(backend) {
@@ -19,22 +25,24 @@ BatchNorm2d::BatchNorm2d(
throw InvalidShapeException("input", 3, in_shape.size());
}
epsilon = CUDANet::Tensor({1}, CUDANet::DType::FLOAT32, backend);
epsilon.set_data<float>(&eps);
this->dtype = dtype;
running_mean = CUDANet::Tensor({in_shape[2]}, CUDANet::DType::FLOAT32, backend);
epsilon = CUDANet::Tensor({1}, dtype, backend);
epsilon.set_data(&eps);
running_mean = CUDANet::Tensor({in_shape[2]}, dtype, backend);
running_mean.zero();
running_var = CUDANet::Tensor({in_shape[2]}, CUDANet::DType::FLOAT32, backend);
running_var = CUDANet::Tensor({in_shape[2]}, dtype, backend);
running_var.fill(1);
weights = CUDANet::Tensor({in_shape[2]}, CUDANet::DType::FLOAT32, backend);
weights = CUDANet::Tensor({in_shape[2]}, dtype, backend);
weights.fill(1);
biases = CUDANet::Tensor({in_shape[2]}, CUDANet::DType::FLOAT32, backend);
biases = CUDANet::Tensor({in_shape[2]}, dtype, backend);
biases.zero();
output = CUDANet::Tensor(in_shape, CUDANet::DType::FLOAT32, backend);
output = CUDANet::Tensor(in_shape, dtype, backend);
}
BatchNorm2d::~BatchNorm2d() {}
@@ -63,41 +71,41 @@ CUDANet::Shape BatchNorm2d::output_shape() {
}
size_t BatchNorm2d::input_size() {
return sizeof(float) * in_shape[0] * in_shape[1] * in_shape[2];
return dtype_size(dtype) * in_shape[0] * in_shape[1] * in_shape[2];
}
size_t BatchNorm2d::output_size() {
return sizeof(float) * in_shape[0] * in_shape[1] * in_shape[2];
return dtype_size(dtype) * in_shape[0] * in_shape[1] * in_shape[2];
}
void BatchNorm2d::set_weights(void* input) {
weights.set_data<float>(static_cast<float*>(input));
weights.set_data(input);
}
CUDANet::Tensor& BatchNorm2d::get_weights() {
return weights;
size_t BatchNorm2d::get_weights_size() {
return weights.size();
}
void BatchNorm2d::set_biases(void* input) {
biases.set_data<float>(static_cast<float*>(input));
biases.set_data(input);
}
CUDANet::Tensor& BatchNorm2d::get_biases() {
return biases;
size_t BatchNorm2d::get_biases_size() {
return biases.size();
}
void BatchNorm2d::set_running_mean(void* input) {
running_mean.set_data<float>(static_cast<float*>(input));
running_mean.set_data(input);
}
CUDANet::Tensor& BatchNorm2d::get_running_mean() {
return running_mean;
size_t BatchNorm2d::get_running_mean_size() {
return running_mean.size();
}
void BatchNorm2d::set_running_var(void* input) {
running_var.set_data<float>(static_cast<float*>(input));
running_var.set_data(input);
}
CUDANet::Tensor& BatchNorm2d::get_running_var() {
return running_var;
size_t BatchNorm2d::get_running_var_size() {
return running_var.size();
}

View File

@@ -1,9 +1,12 @@
#include "concat.hpp"
#include "layers/concat.hpp"
using namespace CUDANet::Layers;
Concat::Concat(const CUDANet::Shape a_shape, const CUDANet::Shape b_shape, CUDANet::Backend *backend)
: a_shape(a_shape), b_shape(b_shape), backend(backend) {
: Concat(a_shape, b_shape, backend->get_default_dtype(), backend) {}
Concat::Concat(const CUDANet::Shape a_shape, const CUDANet::Shape b_shape, CUDANet::DType dtype, CUDANet::Backend *backend)
: a_shape(a_shape), b_shape(b_shape), backend(backend), dtype(dtype) {
if (a_shape[0] != b_shape[0] || a_shape[1] != b_shape[1]) {
throw InvalidShapeException(
"Concat requires matching height and width dimensions", a_shape,
@@ -12,7 +15,7 @@ Concat::Concat(const CUDANet::Shape a_shape, const CUDANet::Shape b_shape, CUDAN
}
out_shape = {a_shape[0], a_shape[1], a_shape[2] + b_shape[2]};
output = CUDANet::Tensor(out_shape, CUDANet::DType::FLOAT32, backend);
output = CUDANet::Tensor(out_shape, dtype, backend);
}
Concat::~Concat() {}

View File

@@ -1,8 +1,7 @@
#include "conv2d.hpp"
#include <format>
#include <stdexcept>
#include "layers/conv2d.hpp"
#include "layer.hpp"
#include "tensor.hpp"
@@ -14,6 +13,16 @@ Conv2d::Conv2d(
CUDANet::Shape stride_shape,
CUDANet::Shape padding_shape,
CUDANet::Backend* backend
)
: Conv2d(input_shape, kernel_shape, stride_shape, padding_shape, backend->get_default_dtype(), backend) {}
Conv2d::Conv2d(
CUDANet::Shape input_shape,
CUDANet::Shape kernel_shape,
CUDANet::Shape stride_shape,
CUDANet::Shape padding_shape,
CUDANet::DType dtype,
CUDANet::Backend* backend
)
: in_shape(input_shape),
kernel_shape(kernel_shape),
@@ -36,6 +45,8 @@ Conv2d::Conv2d(
throw InvalidShapeException("padding", 3, padding_shape.size());
}
this->dtype = dtype;
out_shape = {
(in_shape[0] - kernel_shape[0] + 2 * padding_shape[0]) /
stride_shape[0] +
@@ -48,17 +59,17 @@ Conv2d::Conv2d(
output = CUDANet::Tensor(
Shape{out_shape[0], out_shape[1], out_shape[2]},
CUDANet::DType::FLOAT32, backend
dtype, backend
);
weights = CUDANet::Tensor(
Shape{
kernel_shape[0], kernel_shape[1], kernel_shape[2], in_shape[2]
},
CUDANet::DType::FLOAT32, backend
dtype, backend
);
biases = CUDANet::Tensor(
Shape{kernel_shape[2]}, CUDANet::DType::FLOAT32, backend
Shape{kernel_shape[2]}, dtype, backend
);
weights.zero();
@@ -85,27 +96,27 @@ CUDANet::Shape Conv2d::output_shape() {
}
size_t Conv2d::input_size() {
return sizeof(float) * in_shape[0] * in_shape[1] * in_shape[2];
return dtype_size(dtype) * in_shape[0] * in_shape[1] * in_shape[2];
}
size_t Conv2d::output_size() {
return sizeof(float) * out_shape[0] * out_shape[1] * out_shape[2];
return dtype_size(dtype) * out_shape[0] * out_shape[1] * out_shape[2];
}
void Conv2d::set_weights(void* input) {
weights.set_data<float>(static_cast<float*>(input));
weights.set_data(input);
}
CUDANet::Tensor& Conv2d::get_weights() {
return weights;
size_t Conv2d::get_weights_size() {
return weights.size();
}
void Conv2d::set_biases(void* input) {
biases.set_data<float>(static_cast<float*>(input));
biases.set_data(input);
}
CUDANet::Tensor& Conv2d::get_biases() {
return biases;
size_t Conv2d::get_biases_size() {
return biases.size();
}
CUDANet::Shape Conv2d::get_padding_shape() {

View File

@@ -1,11 +1,14 @@
#include "dense.hpp"
#include <format>
#include <stdexcept>
#include "layers/dense.hpp"
using namespace CUDANet::Layers;
Dense::Dense(CUDANet::Shape in_shape, CUDANet::Shape out_shape, CUDANet::Backend* backend)
: Dense(in_shape, out_shape, backend->get_default_dtype(), backend) {}
Dense::Dense(CUDANet::Shape in_shape, CUDANet::Shape out_shape, CUDANet::DType dtype, CUDANet::Backend* backend)
: backend(backend),
in_shape(in_shape),
out_shape(out_shape) {
@@ -18,9 +21,11 @@ Dense::Dense(CUDANet::Shape in_shape, CUDANet::Shape out_shape, CUDANet::Backend
throw InvalidShapeException("output", 1, out_shape.size());
}
weights = CUDANet::Tensor(Shape{out_shape[0], in_shape[0]}, CUDANet::DType::FLOAT32, backend);
biases = CUDANet::Tensor(Shape{out_shape[0]}, CUDANet::DType::FLOAT32, backend);
output = CUDANet::Tensor(Shape{out_shape[0]}, CUDANet::DType::FLOAT32, backend);
this->dtype = dtype;
weights = CUDANet::Tensor(Shape{out_shape[0], in_shape[0]}, dtype, backend);
biases = CUDANet::Tensor(Shape{out_shape[0]}, dtype, backend);
output = CUDANet::Tensor(Shape{out_shape[0]}, dtype, backend);
weights.zero();
biases.zero();
@@ -51,18 +56,19 @@ size_t Dense::output_size() {
return out_shape[0];
};
// TODO: Use dtype
void Dense::set_weights(void* input) {
weights.set_data<float>(static_cast<float*>(input));
weights.set_data(input);
}
CUDANet::Tensor& Dense::get_weights() {
return weights;
size_t Dense::get_weights_size() {
return weights.size();
}
void Dense::set_biases(void* input) {
biases.set_data<float>(static_cast<float*>(input));
biases.set_data(input);
}
CUDANet::Tensor& Dense::get_biases() {
return biases;
size_t Dense::get_biases_size() {
return biases.size();
}

View File

@@ -1,7 +1,7 @@
#include "max_pool.hpp"
#include <stdexcept>
#include "layers/max_pool.hpp"
using namespace CUDANet::Layers;
MaxPool2d::MaxPool2d(
@@ -10,6 +10,16 @@ MaxPool2d::MaxPool2d(
CUDANet::Shape stride_shape,
CUDANet::Shape padding_shape,
CUDANet::Backend* backend
)
: MaxPool2d(input_shape, pool_shape, stride_shape, padding_shape, backend->get_default_dtype(), backend) {}
MaxPool2d::MaxPool2d(
CUDANet::Shape input_shape,
CUDANet::Shape pool_shape,
CUDANet::Shape stride_shape,
CUDANet::Shape padding_shape,
CUDANet::DType dtype,
CUDANet::Backend* backend
)
: in_shape(input_shape),
pool_shape(pool_shape),
@@ -32,6 +42,8 @@ MaxPool2d::MaxPool2d(
throw InvalidShapeException("padding", 2, padding_shape.size());
}
this->dtype = dtype;
out_shape = {
(in_shape[0] + 2 * padding_shape[0] - pool_shape[0]) / stride_shape[0] +
1,
@@ -42,7 +54,7 @@ MaxPool2d::MaxPool2d(
output = CUDANet::Tensor(
Shape{out_shape[0] * out_shape[1] * out_shape[2]},
CUDANet::DType::FLOAT32, backend
dtype, backend
);
}
@@ -66,17 +78,21 @@ CUDANet::Shape MaxPool2d::output_shape() {
}
size_t MaxPool2d::input_size() {
return sizeof(float) * in_shape[0] * in_shape[1] * in_shape[2];
return dtype_size(dtype) * in_shape[0] * in_shape[1] * in_shape[2];
}
size_t MaxPool2d::output_size() {
return sizeof(float) * out_shape[0] * out_shape[1] * out_shape[2];
return dtype_size(dtype) * out_shape[0] * out_shape[1] * out_shape[2];
}
void MaxPool2d::set_weights(void* input) {}
CUDANet::Tensor& MaxPool2d::get_weights() {}
size_t MaxPool2d::get_weights_size() {
return 0;
}
void MaxPool2d::set_biases(void* input) {}
CUDANet::Tensor& MaxPool2d::get_biases() {}
size_t MaxPool2d::get_biases_size() {
return 0;
}

View File

@@ -1,5 +1,3 @@
#include "model.hpp"
#include <fstream>
#include <iostream>
#include <iomanip>
@@ -8,7 +6,9 @@
#include <vector>
#include "layer.hpp"
#include "batch_norm.hpp"
#include "layers/batch_norm.hpp"
#include "model.hpp"
using namespace CUDANet;
@@ -128,20 +128,20 @@ void Model::load_weights(const std::string& path) {
Layer* layer = layer_map[tensor_info.name];
if (tensor_info.type == TensorType::WEIGHT) {
if (layer->get_weights().size() != values.size()) {
if (layer->get_weights_size() != values.size()) {
std::cerr << "Layer: " << tensor_info.name
<< " has incorrect number of weights, expected "
<< layer->get_weights().size() << " but got "
<< layer->get_weights_size() << " but got "
<< values.size() << ", skipping" << std::endl;
continue;
}
layer->set_weights(values.data());
} else if (tensor_info.type == TensorType::BIAS) {
if (layer->get_biases().size() != values.size()) {
if (layer->get_biases_size() != values.size()) {
std::cerr << "Layer: " << tensor_info.name
<< " has incorrect number of biases, expected "
<< layer->get_biases().size() << " but got "
<< layer->get_biases_size() << " but got "
<< values.size() << ", skipping" << std::endl;
continue;
}
@@ -155,16 +155,16 @@ void Model::load_weights(const std::string& path) {
}
if (tensor_info.type == TensorType::RUNNING_MEAN) {
if (bn_layer->get_running_mean().size() != values.size()) {
if (bn_layer->get_running_mean_size() != values.size()) {
std::cerr << "Layer: " << tensor_info.name << " has incorrect number of running mean values, expected "
<< bn_layer->get_running_mean().size() << " but got " << values.size() << ", skipping" << std::endl;
<< bn_layer->get_running_mean_size() << " but got " << values.size() << ", skipping" << std::endl;
continue;
}
bn_layer->set_running_mean(values.data());
} else if (tensor_info.type == TensorType::RUNNING_VAR) {
if (bn_layer->get_running_var().size() != values.size()) {
if (bn_layer->get_running_var_size() != values.size()) {
std::cerr << "Layer: " << tensor_info.name << " has incorrect number of running var values, expected "
<< bn_layer->get_running_var().size() << " but got " << values.size() << ", skipping" << std::endl;
<< bn_layer->get_running_var_size() << " but got " << values.size() << ", skipping" << std::endl;
continue;
}
bn_layer->set_running_var(values.data());

View File

@@ -1,7 +1,7 @@
#include "module.hpp"
#include <algorithm>
#include "module.hpp"
using namespace CUDANet;
CUDANet::Shape Module::input_shape() {
@@ -12,22 +12,6 @@ CUDANet::Shape Module::output_shape() {
return out_shape;
}
size_t Module::input_size() {
size_t count = 1;
for (const auto& dim : in_shape) {
count *= dim;
}
return sizeof(float) * count;
}
size_t Module::output_size() {
size_t count = 1;
for (const auto& dim : out_shape) {
count *= dim;
}
return sizeof(float) * count;
}
void Module::register_layer(const std::string& name, Layer* layer) {
layers.push_back({name, layer});
}

View File

@@ -4,17 +4,37 @@
using namespace CUDANet;
size_t dtype_size(DType dtype) {
switch (dtype)
{
case DType::FLOAT32:
return 4;
break;
default:
throw std::runtime_error("Unknown DType");
break;
}
}
Tensor::Tensor(Shape shape, CUDANet::Backend* backend)
: Tensor(shape, backend->get_default_dtype(), backend) {}
Tensor::Tensor(Shape shape, DType dtype, Backend* backend)
: shape(shape), dtype(dtype), backend(backend), d_ptr(nullptr) {
if (shape.empty()) {
throw std::runtime_error("Tensor shape cannot be empty");
}
// Check if backend supports DType
if (!backend->supports_dtype(dtype)) {
throw std::runtime_error("Unsupported DType");
}
// Count total elements
size_t count = 1;
for (const auto& dim : shape) {
count *= dim;
for (size_t i = 0; i < shape.size(); ++i) {
count *= shape[i];
}
total_elms = count;
@@ -39,9 +59,8 @@ Tensor::Tensor(Tensor&& other) noexcept
total_elms(other.total_elms),
total_size(other.total_size),
backend(other.backend),
d_ptr(other.d_ptr)
{
other.d_ptr = nullptr;
d_ptr(other.d_ptr) {
other.d_ptr = nullptr;
other.backend = nullptr;
}
@@ -51,17 +70,17 @@ Tensor& Tensor::operator=(Tensor&& other) noexcept {
if (d_ptr != nullptr && backend != nullptr) {
backend->deallocate(d_ptr);
}
// Steal other's resources
shape = std::move(other.shape);
dtype = other.dtype;
shape = std::move(other.shape);
dtype = other.dtype;
total_elms = other.total_elms;
total_size = other.total_size;
backend = other.backend;
d_ptr = other.d_ptr;
backend = other.backend;
d_ptr = other.d_ptr;
// Leave other in valid but empty state
other.d_ptr = nullptr;
other.d_ptr = nullptr;
other.backend = nullptr;
}
return *this;
@@ -74,6 +93,10 @@ Tensor::~Tensor() {
}
}
DType Tensor::get_dtype() const {
return dtype;
}
size_t Tensor::numel() const {
return total_elms;
}
@@ -82,6 +105,22 @@ size_t Tensor::size() const {
return total_size;
}
void* Tensor::device_ptr() const {
return d_ptr;
}
void* Tensor::device_ptr() {
return d_ptr;
}
void Tensor::zero() {
backend->zero(*this);
}
void Tensor::fill(int value) {
backend->fill(*this, value);
}
void Tensor::set_data(void *data) {
backend->copy_to_device(*this, data, total_size);
}