2024-04-16 21:41:10 +02:00
2024-04-16 21:07:06 +02:00
2024-04-16 21:07:06 +02:00
2024-04-15 22:17:14 +02:00
2024-03-22 20:03:22 +01:00
2024-03-20 22:31:39 +01:00
2024-03-12 22:09:37 +01:00
2024-02-07 20:06:30 +01:00
2024-04-16 21:41:10 +02:00

CUDANet

⚠️ Work in progress

Convolutional Neural Network inference library running on CUDA.

Features

  • Input layer
  • Dense (fully-connected) layer
  • Conv2d layer
  • Max pooling
  • Average pooling
  • Concat layer
  • Sigmoid activation
  • ReLU activation
  • Softmax activation
  • Load weights from file

Usage

requirements

build

mkdir build
cd build
cmake -S ..
make

build and run tests

make test_main
./test/test_main

Create Layers and Model

CUDANet::Model *model =
    new CUDANet::Model(inputSize, inputChannels, outputSize);

// Conv2d
CUDANet::Layers::Conv2d *conv2d = new CUDANet::Layers::Conv2d(
    inputSize, inputChannels, kernelSize, stride, numFilters,
    CUDANet::Layers::Padding::VALID,
    CUDANet::Layers::ActivationType::NONE
);

if (setWeights) {
    conv2d->setWeights(getConv1Weights().data());
}
model->addLayer("conv1", conv2d);

Sequential and Functional API

Run prediction by passing the input through the layers in the order they have been added.

std::vector<float> input = {...};
model->predict(input.data());

If you want to use more complex forward pass, using Concat or Add layers, you can subclass the model class and override the default predict function

class MyModel : public CUDANet::Model {
    ...
}

...

float* MyModel::predict(const float* input) {
    float* d_input = inputLayer->forward(input);

    d_conv1 = getLayer("conv1")->forward(d_input);
    d_conv2 = getLayer("conv2")->forward(d_input);

    d_output = concatLayer->forward(d_conv1, d_conv2);

    return outputLayer->forward(d_input);
}

Load Pre-trained Weights

CUDANet uses format similar to safetensors to load weights and biases.

[int64 header size, header, tensor values]

where header is a csv format

<tensor_name>,<tensor_size>,<tensor_offset>

To load weights call load_weights function on Model object.

To export weights from pytorch you can use tools/export_model_weights.py script

Description
Convolutional Neural Network inference library running on CUDA
Readme MIT 6.8 MiB
Languages
Cuda 44.5%
C++ 43.2%
Python 11.1%
CMake 1.2%