Files
CUDANet/test/layers/test_max_pooling.cu
2024-05-26 19:03:10 +02:00

201 lines
5.6 KiB
Plaintext

#include <cuda_runtime.h>
#include <gtest/gtest.h>
#include <vector>
#include "max_pooling.cuh"
class MaxPoolingLayerTest : public ::testing::Test {
protected:
dim2d inputSize;
int nChannels;
dim2d poolingSize;
dim2d stride;
dim2d padding;
std::vector<float> input;
std::vector<float> expected;
float *d_input;
float *d_output;
CUDANet::Layers::MaxPooling2d *maxPoolingLayer;
virtual void SetUp() override {
d_input = nullptr;
d_output = nullptr;
maxPoolingLayer = nullptr;
}
virtual void TearDown() override {
if (d_input) {
cudaFree(d_input);
}
delete maxPoolingLayer;
}
void runTest() {
cudaError_t cudaStatus;
maxPoolingLayer = new CUDANet::Layers::MaxPooling2d(
inputSize, nChannels, poolingSize, stride, padding,
CUDANet::Layers::ActivationType::NONE
);
cudaStatus =
cudaMalloc((void **)&d_input, sizeof(float) * input.size());
EXPECT_EQ(cudaStatus, cudaSuccess);
cudaStatus = cudaMemcpy(
d_input, input.data(), sizeof(float) * input.size(),
cudaMemcpyHostToDevice
);
EXPECT_EQ(cudaStatus, cudaSuccess);
d_output = maxPoolingLayer->forward(d_input);
int outputSize = maxPoolingLayer->getOutputSize();
std::vector<float> output(outputSize);
cudaStatus = cudaMemcpy(
output.data(), d_output, sizeof(float) * output.size(),
cudaMemcpyDeviceToHost
);
EXPECT_EQ(cudaStatus, cudaSuccess);
for (int i = 0; i < output.size(); ++i) {
EXPECT_FLOAT_EQ(expected[i], output[i]);
}
}
};
TEST_F(MaxPoolingLayerTest, MaxPoolForwardTest) {
inputSize = {4, 4};
nChannels = 2;
poolingSize = {2, 2};
stride = {2, 2};
padding = {0, 0};
input = {
// clang-format off
// Channel 0
0.573f, 0.619f, 0.732f, 0.055f,
0.243f, 0.316f, 0.573f, 0.619f,
0.712f, 0.055f, 0.243f, 0.316f,
0.573f, 0.619f, 0.742f, 0.055f,
// Channel 1
0.473f, 0.919f, 0.107f, 0.073f,
0.073f, 0.362f, 0.973f, 0.059f,
0.473f, 0.455f, 0.283f, 0.416f,
0.532f, 0.819f, 0.732f, 0.850f
// clang-format on
};
expected = {0.619f, 0.732f, 0.712f, 0.742f, 0.919f, 0.973f, 0.819f, 0.85f};
runTest();
}
TEST_F(MaxPoolingLayerTest, MaxPoolForwardNonSquareInputTest) {
inputSize = {4, 6}; // Non-square input
nChannels = 2;
poolingSize = {2, 2};
stride = {2, 2};
padding = {0, 0};
input = {// Channel 0
0.573f, 0.619f, 0.732f, 0.055f, 0.123f, 0.234f, 0.243f, 0.316f,
0.573f, 0.619f, 0.456f, 0.789f, 0.712f, 0.055f, 0.243f, 0.316f,
0.654f, 0.987f, 0.573f, 0.619f, 0.742f, 0.055f, 0.321f, 0.654f,
// Channel 1
0.473f, 0.919f, 0.107f, 0.073f, 0.321f, 0.654f, 0.073f, 0.362f,
0.973f, 0.059f, 0.654f, 0.987f, 0.473f, 0.455f, 0.283f, 0.416f,
0.789f, 0.123f, 0.532f, 0.819f, 0.732f, 0.850f, 0.987f, 0.321f
};
expected = {0.619f, 0.732f, 0.789f, 0.712f, 0.742f, 0.987f, 0.919f, 0.973f, 0.987f, 0.819f, 0.85f, 0.987f};
runTest();
}
TEST_F(MaxPoolingLayerTest, MaxPoolForwardNonSquarePoolSizeTest) {
inputSize = {4, 4};
nChannels = 2;
poolingSize = {2, 3}; // Non-square pooling size
stride = {2, 2};
padding = {0, 0};
input = {
// clang-format off
// Channel 0
0.573f, 0.619f, 0.732f, 0.055f,
0.243f, 0.316f, 0.573f, 0.619f,
0.712f, 0.055f, 0.243f, 0.316f,
0.573f, 0.619f, 0.742f, 0.055f,
// Channel 1
0.473f, 0.919f, 0.107f, 0.073f,
0.073f, 0.362f, 0.973f, 0.059f,
0.473f, 0.455f, 0.283f, 0.416f,
0.532f, 0.819f, 0.732f, 0.850f
// clang-format on
};
expected = {0.732f, 0.742f, 0.973f, 0.819f};
runTest();
}
TEST_F(MaxPoolingLayerTest, MaxPoolForwardNonSquareStrideTest) {
inputSize = {4, 4};
nChannels = 2;
poolingSize = {2, 2};
stride = {1, 2}; // Non-square stride
padding = {0, 0};
input = {
// clang-format off
// Channel 0
0.573f, 0.619f, 0.732f, 0.055f,
0.243f, 0.316f, 0.573f, 0.619f,
0.712f, 0.055f, 0.243f, 0.316f,
0.573f, 0.619f, 0.742f, 0.055f,
// Channel 1
0.473f, 0.919f, 0.107f, 0.073f,
0.073f, 0.362f, 0.973f, 0.059f,
0.473f, 0.455f, 0.283f, 0.416f,
0.532f, 0.819f, 0.732f, 0.850f
// clang-format on
};
expected = {0.619f, 0.732f, 0.712f, 0.619f, 0.712f, 0.742f, 0.919f, 0.973f, 0.473f, 0.973f, 0.819f, 0.85f};
runTest();
}
TEST_F(MaxPoolingLayerTest, MaxPoolForwardNonSquarePaddingTest) {
inputSize = {4, 4};
nChannels = 2;
poolingSize = {2, 2};
stride = {2, 2}; // Non-square stride
padding = {0, 1};
input = {
// clang-format off
// Channel 0
0.573f, 0.619f, 0.732f, 0.055f,
0.243f, 0.316f, 0.573f, 0.619f,
0.712f, 0.055f, 0.243f, 0.316f,
0.573f, 0.619f, 0.742f, 0.055f,
// Channel 1
0.473f, 0.919f, 0.107f, 0.073f,
0.073f, 0.362f, 0.973f, 0.059f,
0.473f, 0.455f, 0.283f, 0.416f,
0.532f, 0.819f, 0.732f, 0.850f
// clang-format on
};
expected = {0.573f, 0.732f, 0.619f, 0.712f, 0.742f, 0.316f, 0.473f, 0.973f, 0.073f, 0.532f, 0.819f, 0.85f};
runTest();
}