mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-05 17:34:21 +00:00
Add padding to max pooling
This commit is contained in:
@@ -13,7 +13,8 @@ __global__ void max_pooling(
|
||||
const dim2d outputSize,
|
||||
const int nChannels,
|
||||
const dim2d poolingSize,
|
||||
const dim2d stride
|
||||
const dim2d stride,
|
||||
const dim2d padding
|
||||
);
|
||||
|
||||
__global__ void avg_pooling(
|
||||
|
||||
@@ -13,6 +13,7 @@ class MaxPooling2d : public SequentialLayer, public TwoDLayer {
|
||||
int nChannels,
|
||||
dim2d poolingSize,
|
||||
dim2d stride,
|
||||
dim2d padding,
|
||||
ActivationType activationType
|
||||
);
|
||||
~MaxPooling2d();
|
||||
@@ -40,6 +41,7 @@ class MaxPooling2d : public SequentialLayer, public TwoDLayer {
|
||||
int nChannels;
|
||||
dim2d poolingSize;
|
||||
dim2d stride;
|
||||
dim2d padding;
|
||||
|
||||
dim2d outputSize;
|
||||
|
||||
|
||||
@@ -11,7 +11,8 @@ __global__ void Kernels::max_pooling(
|
||||
const dim2d outputSize,
|
||||
const int nChannels,
|
||||
const dim2d poolingSize,
|
||||
const dim2d stride
|
||||
const dim2d stride,
|
||||
const dim2d padding
|
||||
) {
|
||||
int j = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
int i = blockDim.y * blockIdx.y + threadIdx.y;
|
||||
@@ -25,12 +26,16 @@ __global__ void Kernels::max_pooling(
|
||||
|
||||
for (int k = 0; k < poolingSize.first; k++) {
|
||||
for (int l = 0; l < poolingSize.second; l++) {
|
||||
int inputIndex = c * inputSize.first * inputSize.second +
|
||||
(i * stride.first + k) * inputSize.second +
|
||||
(j * stride.second + l);
|
||||
int inputRow = i * stride.first + k - padding.first;
|
||||
int inputCol = j * stride.second + l - padding.second;
|
||||
|
||||
if (d_input[inputIndex] > max) {
|
||||
max = d_input[inputIndex];
|
||||
if (inputRow >= 0 && inputRow < inputSize.first && inputCol >= 0 &&
|
||||
inputCol < inputSize.second) {
|
||||
int inputIndex = c * inputSize.first * inputSize.second +
|
||||
inputRow * inputSize.second + inputCol;
|
||||
if (d_input[inputIndex] > max) {
|
||||
max = d_input[inputIndex];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -62,12 +67,11 @@ __global__ void Kernels::avg_pooling(
|
||||
|
||||
for (int k = 0; k < poolingSize.first; k++) {
|
||||
for (int l = 0; l < poolingSize.second; l++) {
|
||||
|
||||
int inputRow = i * stride.first + k - padding.first;
|
||||
int inputCol = j * stride.second + l - padding.second;
|
||||
|
||||
if (inputRow >= 0 && inputRow < inputSize.first &&
|
||||
inputCol >= 0 && inputCol < inputSize.second) {
|
||||
if (inputRow >= 0 && inputRow < inputSize.first && inputCol >= 0 &&
|
||||
inputCol < inputSize.second) {
|
||||
int inputIndex = c * inputSize.first * inputSize.second +
|
||||
inputRow * inputSize.second + inputCol;
|
||||
sum += d_input[inputIndex];
|
||||
|
||||
@@ -9,23 +9,31 @@ MaxPooling2d::MaxPooling2d(
|
||||
int nChannels,
|
||||
dim2d poolingSize,
|
||||
dim2d stride,
|
||||
dim2d padding,
|
||||
ActivationType activationType
|
||||
)
|
||||
: inputSize(inputSize),
|
||||
nChannels(nChannels),
|
||||
poolingSize(poolingSize),
|
||||
stride(stride) {
|
||||
stride(stride),
|
||||
padding(padding) {
|
||||
outputSize = {
|
||||
(inputSize.first - poolingSize.first) / stride.first + 1,
|
||||
(inputSize.second - poolingSize.second) / stride.second + 1
|
||||
(inputSize.first + 2 * padding.first - poolingSize.first) /
|
||||
stride.first +
|
||||
1,
|
||||
(inputSize.second + 2 * padding.second - poolingSize.second) /
|
||||
stride.second +
|
||||
1
|
||||
};
|
||||
|
||||
activation =
|
||||
new Activation(activationType, outputSize.first * outputSize.second * nChannels);
|
||||
activation = new Activation(
|
||||
activationType, outputSize.first * outputSize.second * nChannels
|
||||
);
|
||||
|
||||
d_output = nullptr;
|
||||
CUDA_CHECK(cudaMalloc(
|
||||
(void**)&d_output, sizeof(float) * outputSize.first * outputSize.second * nChannels
|
||||
(void**)&d_output,
|
||||
sizeof(float) * outputSize.first * outputSize.second * nChannels
|
||||
));
|
||||
}
|
||||
|
||||
@@ -43,7 +51,8 @@ float* MaxPooling2d::forward(const float* d_input) {
|
||||
);
|
||||
|
||||
Kernels::max_pooling<<<grid, block>>>(
|
||||
d_input, d_output, inputSize, outputSize, nChannels, poolingSize, stride
|
||||
d_input, d_output, inputSize, outputSize, nChannels, poolingSize,
|
||||
stride, padding
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
|
||||
@@ -11,6 +11,7 @@ class MaxPoolingLayerTest : public ::testing::Test {
|
||||
int nChannels;
|
||||
dim2d poolingSize;
|
||||
dim2d stride;
|
||||
dim2d padding;
|
||||
std::vector<float> input;
|
||||
std::vector<float> expected;
|
||||
|
||||
@@ -35,7 +36,7 @@ class MaxPoolingLayerTest : public ::testing::Test {
|
||||
cudaError_t cudaStatus;
|
||||
|
||||
maxPoolingLayer = new CUDANet::Layers::MaxPooling2d(
|
||||
inputSize, nChannels, poolingSize, stride,
|
||||
inputSize, nChannels, poolingSize, stride, padding,
|
||||
CUDANet::Layers::ActivationType::NONE
|
||||
);
|
||||
|
||||
@@ -71,6 +72,7 @@ TEST_F(MaxPoolingLayerTest, MaxPoolForwardTest) {
|
||||
nChannels = 2;
|
||||
poolingSize = {2, 2};
|
||||
stride = {2, 2};
|
||||
padding = {0, 0};
|
||||
|
||||
input = {
|
||||
// clang-format off
|
||||
@@ -97,6 +99,7 @@ TEST_F(MaxPoolingLayerTest, MaxPoolForwardNonSquareInputTest) {
|
||||
nChannels = 2;
|
||||
poolingSize = {2, 2};
|
||||
stride = {2, 2};
|
||||
padding = {0, 0};
|
||||
|
||||
input = {// Channel 0
|
||||
0.573f, 0.619f, 0.732f, 0.055f, 0.123f, 0.234f, 0.243f, 0.316f,
|
||||
@@ -118,6 +121,7 @@ TEST_F(MaxPoolingLayerTest, MaxPoolForwardNonSquarePoolSizeTest) {
|
||||
nChannels = 2;
|
||||
poolingSize = {2, 3}; // Non-square pooling size
|
||||
stride = {2, 2};
|
||||
padding = {0, 0};
|
||||
|
||||
input = {
|
||||
// clang-format off
|
||||
@@ -145,6 +149,7 @@ TEST_F(MaxPoolingLayerTest, MaxPoolForwardNonSquareStrideTest) {
|
||||
nChannels = 2;
|
||||
poolingSize = {2, 2};
|
||||
stride = {1, 2}; // Non-square stride
|
||||
padding = {0, 0};
|
||||
|
||||
input = {
|
||||
// clang-format off
|
||||
@@ -165,4 +170,32 @@ TEST_F(MaxPoolingLayerTest, MaxPoolForwardNonSquareStrideTest) {
|
||||
|
||||
runTest();
|
||||
|
||||
}
|
||||
|
||||
TEST_F(MaxPoolingLayerTest, MaxPoolForwardNonSquarePaddingTest) {
|
||||
inputSize = {4, 4};
|
||||
nChannels = 2;
|
||||
poolingSize = {2, 2};
|
||||
stride = {2, 2}; // Non-square stride
|
||||
padding = {0, 1};
|
||||
|
||||
input = {
|
||||
// clang-format off
|
||||
// Channel 0
|
||||
0.573f, 0.619f, 0.732f, 0.055f,
|
||||
0.243f, 0.316f, 0.573f, 0.619f,
|
||||
0.712f, 0.055f, 0.243f, 0.316f,
|
||||
0.573f, 0.619f, 0.742f, 0.055f,
|
||||
// Channel 1
|
||||
0.473f, 0.919f, 0.107f, 0.073f,
|
||||
0.073f, 0.362f, 0.973f, 0.059f,
|
||||
0.473f, 0.455f, 0.283f, 0.416f,
|
||||
0.532f, 0.819f, 0.732f, 0.850f
|
||||
// clang-format on
|
||||
};
|
||||
|
||||
expected = {0.573f, 0.732f, 0.619f, 0.712f, 0.742f, 0.316f, 0.473f, 0.973f, 0.073f, 0.532f, 0.819f, 0.85f};
|
||||
|
||||
runTest();
|
||||
|
||||
}
|
||||
@@ -45,7 +45,7 @@ class ModelTest : public ::testing::Test {
|
||||
CUDANet::Layers::MaxPooling2d *maxpool2d =
|
||||
new CUDANet::Layers::MaxPooling2d(
|
||||
poolingInput, numFilters, poolingSize,
|
||||
poolingStride, CUDANet::Layers::ActivationType::RELU
|
||||
poolingStride, {0, 0}, CUDANet::Layers::ActivationType::RELU
|
||||
);
|
||||
model->addLayer("maxpool1", maxpool2d);
|
||||
|
||||
|
||||
@@ -62,6 +62,14 @@ def gen_max_pool_non_square_stride_test_result():
|
||||
|
||||
print_cpp_vector(output)
|
||||
|
||||
def gen_max_pool_non_square_padding_test_result():
|
||||
input = _get_pool_input()
|
||||
|
||||
output = torch.nn.MaxPool2d(kernel_size=2, stride=2, padding=(0, 1))(input)
|
||||
output = torch.flatten(output)
|
||||
|
||||
print_cpp_vector(output)
|
||||
|
||||
|
||||
def gen_avg_pool_test_result():
|
||||
|
||||
@@ -123,6 +131,8 @@ if __name__ == "__main__":
|
||||
gen_max_non_square_pool_test_result()
|
||||
print("Max pool non square stride test:")
|
||||
gen_max_pool_non_square_stride_test_result()
|
||||
print("Max pool non square padding test:")
|
||||
gen_max_pool_non_square_padding_test_result()
|
||||
|
||||
print("--------------")
|
||||
|
||||
|
||||
Reference in New Issue
Block a user