mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-06 09:44:28 +00:00
108 lines
2.2 KiB
Markdown
108 lines
2.2 KiB
Markdown
# CUDANet
|
|
|
|
:warning: Work in progress
|
|
|
|
Convolutional Neural Network inference library running on CUDA.
|
|
|
|
## Features
|
|
|
|
- [x] Input layer
|
|
- [x] Dense (fully-connected) layer
|
|
- [x] Conv2d layer
|
|
- [x] Max pooling
|
|
- [x] Average pooling
|
|
- [x] Concat layer
|
|
- [x] Sigmoid activation
|
|
- [x] ReLU activation
|
|
- [x] Softmax activation
|
|
- [x] Load weights from file
|
|
|
|
## Usage
|
|
|
|
**requirements**
|
|
- [cmake](https://cmake.org/)
|
|
- [CUDA](https://developer.nvidia.com/cuda-downloads)
|
|
- [Google Test](https://github.com/google/googletest) (for testing only)
|
|
|
|
**build**
|
|
|
|
```sh
|
|
mkdir build
|
|
cd build
|
|
cmake -S .. -DCMAKE_CUDA_ARCHITECTURES=75 # Replace with you cuda architecture
|
|
make
|
|
```
|
|
|
|
**build and run tests**
|
|
|
|
```sh
|
|
make test_main
|
|
./test/test_main
|
|
```
|
|
|
|
### Create Layers and Model
|
|
|
|
```cpp
|
|
CUDANet::Model *model =
|
|
new CUDANet::Model(inputSize, inputChannels, outputSize);
|
|
|
|
// Conv2d
|
|
CUDANet::Layers::Conv2d *conv2d = new CUDANet::Layers::Conv2d(
|
|
inputSize, inputChannels, kernelSize, stride, numFilters,
|
|
CUDANet::Layers::Padding::VALID,
|
|
CUDANet::Layers::ActivationType::NONE
|
|
);
|
|
|
|
if (setWeights) {
|
|
conv2d->setWeights(getConv1Weights().data());
|
|
}
|
|
model->addLayer("conv1", conv2d);
|
|
```
|
|
|
|
### Sequential and Functional API
|
|
|
|
Run prediction by passing the input through the layers in the order they have been added.
|
|
|
|
```cpp
|
|
std::vector<float> input = {...};
|
|
model->predict(input.data());
|
|
```
|
|
|
|
If you want to use more complex forward pass, using `Concat` or `Add` layers, you can subclass the model class and override the default `predict` function
|
|
|
|
```cpp
|
|
class MyModel : public CUDANet::Model {
|
|
...
|
|
}
|
|
|
|
...
|
|
|
|
float* MyModel::predict(const float* input) {
|
|
float* d_input = inputLayer->forward(input);
|
|
|
|
d_conv1 = getLayer("conv1")->forward(d_input);
|
|
d_conv2 = getLayer("conv2")->forward(d_input);
|
|
|
|
d_output = concatLayer->forward(d_conv1, d_conv2);
|
|
|
|
return outputLayer->forward(d_input);
|
|
}
|
|
```
|
|
|
|
### Load Pre-trained Weights
|
|
|
|
CUDANet uses format similar to safetensors to load weights and biases.
|
|
|
|
```
|
|
[int64 header size, header, tensor values]
|
|
```
|
|
|
|
where `header` is a csv format
|
|
|
|
```
|
|
<tensor_name>,<tensor_size>,<tensor_offset>
|
|
```
|
|
|
|
To load weights call `load_weights` function on Model object.
|
|
|
|
To export weights from pytorch you can use `tools/export_model_weights.py` script |