Files
CUDANet/test/cuda/layers/test_batch_norm.cu

147 lines
4.7 KiB
Plaintext

#include <cuda_runtime.h>
#include <gtest/gtest.h>
#include <vector>
#include "activation.cuh"
#include "batch_norm.cuh"
class BatchNormLayerTest : public ::testing::Test {
protected:
shape2d inputSize;
int nChannels;
std::vector<float> weights;
std::vector<float> biases;
std::vector<float> runningMean;
std::vector<float> runningVar;
std::vector<float> input;
std::vector<float> expected;
float *d_input;
float *d_output;
CUDANet::Layers::BatchNorm2d *batchNorm;
virtual void SetUp() override {
d_input = nullptr;
d_output = nullptr;
batchNorm = nullptr;
}
virtual void TearDown() override {
if (d_input) {
cudaFree(d_input);
}
}
void runTest() {
cudaError_t cudaStatus;
batchNorm = new CUDANet::Layers::BatchNorm2d(
inputSize, nChannels, 1e-5f, CUDANet::Layers::ActivationType::NONE
);
batchNorm->setWeights(weights.data());
batchNorm->setBiases(biases.data());
batchNorm->setRunningMean(runningMean.data());
batchNorm->setRunningVar(runningVar.data());
cudaStatus = cudaGetLastError();
EXPECT_EQ(cudaStatus, cudaSuccess);
cudaStatus =
cudaMalloc((void **)&d_input, sizeof(float) * input.size());
EXPECT_EQ(cudaStatus, cudaSuccess);
cudaStatus = cudaMemcpy(
d_input, input.data(), sizeof(float) * input.size(),
cudaMemcpyHostToDevice
);
EXPECT_EQ(cudaStatus, cudaSuccess);
d_output = batchNorm->forward(d_input);
std::vector<float> output(input.size());
cudaStatus = cudaMemcpy(
output.data(), d_output, sizeof(float) * output.size(),
cudaMemcpyDeviceToHost
);
EXPECT_EQ(cudaStatus, cudaSuccess);
for (int i = 0; i < output.size(); ++i) {
EXPECT_NEAR(output[i], expected[i], 1e-5);
}
delete batchNorm;
}
};
TEST_F(BatchNormLayerTest, BatchNormSmallForwardTest) {
inputSize = {4, 4};
nChannels = 2;
weights = {0.63508f, 0.64903f};
biases = {0.25079f, 0.66841f};
runningMean = {0.5f, 0.5f};
runningVar = {1.0f, 1.0f};
// clang-format off
input = {
// Channel 0
0.38899f, 0.80478f, 0.48836f, 0.97381f,
0.57508f, 0.60835f, 0.65467f, 0.00168f,
0.65869f, 0.74235f, 0.17928f, 0.70349f,
0.15524f, 0.38664f, 0.23411f, 0.7137f,
// Channel 1
0.32473f, 0.15698f, 0.314f, 0.60888f,
0.80268f, 0.99766f, 0.93694f, 0.89237f,
0.13449f, 0.27367f, 0.53036f, 0.18962f,
0.57672f, 0.48364f, 0.10863f, 0.0571f
};
// clang-format on
expected = {0.18029f, 0.44435f, 0.2434f, 0.5517f, 0.29847f, 0.3196f,
0.34902f, -0.06568f, 0.35157f, 0.4047f, 0.04711f, 0.38002f,
0.03184f, 0.1788f, 0.08193f, 0.38651f, 0.55466f, 0.44578f,
0.54769f, 0.73908f, 0.86486f, 0.9914f, 0.952f, 0.92307f,
0.43118f, 0.52152f, 0.68811f, 0.46697f, 0.7182f, 0.65779f,
0.4144f, 0.38096f};
runTest();
}
TEST_F(BatchNormLayerTest, BatchNormNonSquareInputTest) {
inputSize = {4, 6}; // Non-square input
nChannels = 2;
weights = {0.63508f, 0.64903f};
biases = {0.25079f, 0.66841f};
runningMean = {0.5f, 0.5f};
runningVar = {1.0f, 1.0f};
input = {// Channel 0
0.38899f, 0.80478f, 0.48836f, 0.97381f, 0.21567f, 0.92312f,
0.57508f, 0.60835f, 0.65467f, 0.00168f, 0.31567f, 0.71345f,
0.65869f, 0.74235f, 0.17928f, 0.70349f, 0.12856f, 0.95645f,
0.15524f, 0.38664f, 0.23411f, 0.7137f, 0.26789f, 0.83412f,
// Channel 1
0.32473f, 0.15698f, 0.314f, 0.60888f, 0.23145f, 0.78945f, 0.80268f,
0.99766f, 0.93694f, 0.89237f, 0.61234f, 0.92314f, 0.13449f,
0.27367f, 0.53036f, 0.18962f, 0.45623f, 0.14523f, 0.57672f,
0.48364f, 0.10863f, 0.0571f, 0.78934f, 0.67545f
};
expected = {0.18029f, 0.44435f, 0.2434f, 0.5517f, 0.07022f, 0.5195f,
0.29847f, 0.3196f, 0.34902f, -0.06568f, 0.13373f, 0.38635f,
0.35157f, 0.4047f, 0.04711f, 0.38002f, 0.0149f, 0.54067f,
0.03184f, 0.1788f, 0.08193f, 0.38651f, 0.10338f, 0.46298f,
0.55466f, 0.44578f, 0.54769f, 0.73908f, 0.49411f, 0.85627f,
0.86486f, 0.9914f, 0.952f, 0.92307f, 0.74132f, 0.94304f,
0.43118f, 0.52152f, 0.68811f, 0.46697f, 0.64f, 0.43815f,
0.7182f, 0.65779f, 0.4144f, 0.38096f, 0.8562f, 0.78228f};
runTest();
}