#include #include #include #include "activation.cuh" #include "batch_norm.cuh" class BatchNormLayerTest : public ::testing::Test { protected: shape2d inputSize; int nChannels; std::vector weights; std::vector biases; std::vector runningMean; std::vector runningVar; std::vector input; std::vector expected; float *d_input; float *d_output; CUDANet::Layers::BatchNorm2d *batchNorm; virtual void SetUp() override { d_input = nullptr; d_output = nullptr; batchNorm = nullptr; } virtual void TearDown() override { if (d_input) { cudaFree(d_input); } } void runTest() { cudaError_t cudaStatus; batchNorm = new CUDANet::Layers::BatchNorm2d( inputSize, nChannels, 1e-5f, CUDANet::Layers::ActivationType::NONE ); batchNorm->setWeights(weights.data()); batchNorm->setBiases(biases.data()); batchNorm->setRunningMean(runningMean.data()); batchNorm->setRunningVar(runningVar.data()); cudaStatus = cudaGetLastError(); EXPECT_EQ(cudaStatus, cudaSuccess); cudaStatus = cudaMalloc((void **)&d_input, sizeof(float) * input.size()); EXPECT_EQ(cudaStatus, cudaSuccess); cudaStatus = cudaMemcpy( d_input, input.data(), sizeof(float) * input.size(), cudaMemcpyHostToDevice ); EXPECT_EQ(cudaStatus, cudaSuccess); d_output = batchNorm->forward(d_input); std::vector output(input.size()); cudaStatus = cudaMemcpy( output.data(), d_output, sizeof(float) * output.size(), cudaMemcpyDeviceToHost ); EXPECT_EQ(cudaStatus, cudaSuccess); for (int i = 0; i < output.size(); ++i) { EXPECT_NEAR(output[i], expected[i], 1e-5); } delete batchNorm; } }; TEST_F(BatchNormLayerTest, BatchNormSmallForwardTest) { inputSize = {4, 4}; nChannels = 2; weights = {0.63508f, 0.64903f}; biases = {0.25079f, 0.66841f}; runningMean = {0.5f, 0.5f}; runningVar = {1.0f, 1.0f}; // clang-format off input = { // Channel 0 0.38899f, 0.80478f, 0.48836f, 0.97381f, 0.57508f, 0.60835f, 0.65467f, 0.00168f, 0.65869f, 0.74235f, 0.17928f, 0.70349f, 0.15524f, 0.38664f, 0.23411f, 0.7137f, // Channel 1 0.32473f, 0.15698f, 0.314f, 0.60888f, 0.80268f, 0.99766f, 0.93694f, 0.89237f, 0.13449f, 0.27367f, 0.53036f, 0.18962f, 0.57672f, 0.48364f, 0.10863f, 0.0571f }; // clang-format on expected = {0.18029f, 0.44435f, 0.2434f, 0.5517f, 0.29847f, 0.3196f, 0.34902f, -0.06568f, 0.35157f, 0.4047f, 0.04711f, 0.38002f, 0.03184f, 0.1788f, 0.08193f, 0.38651f, 0.55466f, 0.44578f, 0.54769f, 0.73908f, 0.86486f, 0.9914f, 0.952f, 0.92307f, 0.43118f, 0.52152f, 0.68811f, 0.46697f, 0.7182f, 0.65779f, 0.4144f, 0.38096f}; runTest(); } TEST_F(BatchNormLayerTest, BatchNormNonSquareInputTest) { inputSize = {4, 6}; // Non-square input nChannels = 2; weights = {0.63508f, 0.64903f}; biases = {0.25079f, 0.66841f}; runningMean = {0.5f, 0.5f}; runningVar = {1.0f, 1.0f}; input = {// Channel 0 0.38899f, 0.80478f, 0.48836f, 0.97381f, 0.21567f, 0.92312f, 0.57508f, 0.60835f, 0.65467f, 0.00168f, 0.31567f, 0.71345f, 0.65869f, 0.74235f, 0.17928f, 0.70349f, 0.12856f, 0.95645f, 0.15524f, 0.38664f, 0.23411f, 0.7137f, 0.26789f, 0.83412f, // Channel 1 0.32473f, 0.15698f, 0.314f, 0.60888f, 0.23145f, 0.78945f, 0.80268f, 0.99766f, 0.93694f, 0.89237f, 0.61234f, 0.92314f, 0.13449f, 0.27367f, 0.53036f, 0.18962f, 0.45623f, 0.14523f, 0.57672f, 0.48364f, 0.10863f, 0.0571f, 0.78934f, 0.67545f }; expected = {0.18029f, 0.44435f, 0.2434f, 0.5517f, 0.07022f, 0.5195f, 0.29847f, 0.3196f, 0.34902f, -0.06568f, 0.13373f, 0.38635f, 0.35157f, 0.4047f, 0.04711f, 0.38002f, 0.0149f, 0.54067f, 0.03184f, 0.1788f, 0.08193f, 0.38651f, 0.10338f, 0.46298f, 0.55466f, 0.44578f, 0.54769f, 0.73908f, 0.49411f, 0.85627f, 0.86486f, 0.9914f, 0.952f, 0.92307f, 0.74132f, 0.94304f, 0.43118f, 0.52152f, 0.68811f, 0.46697f, 0.64f, 0.43815f, 0.7182f, 0.65779f, 0.4144f, 0.38096f, 0.8562f, 0.78228f}; runTest(); }