Files
CUDANet/README.md
2024-04-28 21:47:12 +02:00

91 lines
2.1 KiB
Markdown

# CUDANet
Convolutional Neural Network inference library running on CUDA.
## Quickstart Guide
**requirements**
- [cmake](https://cmake.org/)
- [CUDA](https://developer.nvidia.com/cuda-downloads)
- [Google Test](https://github.com/google/googletest) (for testing only)
**build**
```sh
mkdir build
cd build
cmake -S .. -DCMAKE_CUDA_ARCHITECTURES=75 # Replace with you cuda architecture
make
```
**build and run tests**
```sh
make test_main
./test/test_main
```
### Create Layers and Model
```cpp
CUDANet::Model *model =
new CUDANet::Model(inputSize, inputChannels, outputSize);
// Conv2d
CUDANet::Layers::Conv2d *conv2d = new CUDANet::Layers::Conv2d(
inputSize, inputChannels, kernelSize, stride, numFilters,
CUDANet::Layers::Padding::VALID,
CUDANet::Layers::ActivationType::NONE
);
if (setWeights) {
conv2d->setWeights(getConv1Weights().data());
}
model->addLayer("conv1", conv2d);
```
### Sequential and Functional API
Run prediction by passing the input through the layers in the order they have been added.
```cpp
std::vector<float> input = {...};
model->predict(input.data());
```
If you want to use more complex forward pass, using `Concat` or `Add` layers, you can subclass the model class and override the default `predict` function
```cpp
class MyModel : public CUDANet::Model {
...
}
...
float* MyModel::predict(const float* input) {
float* d_input = inputLayer->forward(input);
d_conv1 = getLayer("conv1")->forward(d_input);
d_conv2 = getLayer("conv2")->forward(d_input);
d_output = concatLayer->forward(d_conv1, d_conv2);
return outputLayer->forward(d_input);
}
```
### Load Pre-trained Weights
CUDANet uses format similar to safetensors to load weights and biases.
```
[u_short version, u_int64 header size, header, tensor values]
```
where `header` is a csv format
```
<tensor_name>,<tensor_size>,<tensor_offset>
```
To load weights call `load_weights` function on Model object. To export weights from pytorch you can use the `export_model_weights` function from `tools/utils.py` script. Currently only float32 weights are supported