Compare commits

..

2 Commits

Author SHA1 Message Date
5679dc0a50 Add avgPool2d implementation 2025-11-21 19:39:30 +01:00
c83e1f0c45 Implement InvalidShapeException 2025-11-21 18:54:45 +01:00
12 changed files with 179 additions and 158 deletions

View File

@@ -62,6 +62,16 @@ class Backend {
CUDANet::Shape padding_shape,
CUDANet::Shape output_shape
) = 0;
virtual CUDANet::Tensor& avgPool2d(
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
CUDANet::Shape input_shape,
CUDANet::Shape pool_shape,
CUDANet::Shape stride_shape,
CUDANet::Shape padding_shape,
CUDANet::Shape output_shape
) = 0;
};
} // namespace CUDANet

View File

@@ -49,7 +49,7 @@ class CUDA : public Backend {
const CUDANet::Shape out_shape
) override;
CUDANet::Tensor& CUDA::maxPool2d(
CUDANet::Tensor& maxPool2d(
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
CUDANet::Shape input_shape,
@@ -58,6 +58,16 @@ class CUDA : public Backend {
CUDANet::Shape padding_shape,
CUDANet::Shape output_shape
) override;
CUDANet::Tensor& avgPool2d(
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
CUDANet::Shape input_shape,
CUDANet::Shape pool_shape,
CUDANet::Shape stride_shape,
CUDANet::Shape padding_shape,
CUDANet::Shape output_shape
) = 0;
};
} // namespace CUDANet::Backend

View File

@@ -8,7 +8,7 @@ class MaxPool2d : public Layer {
public:
MaxPool2d(
CUDANet::Shape input_shape,
CUDANet::Shape pooling_shape,
CUDANet::Shape pool_shape,
CUDANet::Shape stride_shape,
CUDANet::Shape padding_shape,
CUDANet::Backend* backend
@@ -38,7 +38,7 @@ class MaxPool2d : public Layer {
private:
CUDANet::Shape in_shape;
CUDANet::Shape pooling_shape;
CUDANet::Shape pool_shape;
CUDANet::Shape stride_shape;
CUDANet::Shape padding_shape;

View File

@@ -6,4 +6,21 @@ namespace CUDANet {
typedef std::vector<size_t> Shape;
class InvalidShapeException : public std::runtime_error {
public:
InvalidShapeException(
const std::string& param_name,
size_t expected,
size_t actual
)
: std::runtime_error(
std::format(
"Invalid {} shape. Expected {}, actual {}",
param_name,
expected,
actual
)
) {}
};
} // namespace CUDANet

View File

@@ -1,6 +1,6 @@
#include "cuda_helper.cuh"
#include "layer.hpp"
#include "pooling.cuh"
#include "pool.cuh"
using namespace CUDANet;

View File

@@ -137,3 +137,29 @@ CUDANet::Tensor& CUDA::maxPool2d(
return output;
}
CUDANet::Tensor& CUDA::avgPool2d(
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
CUDANet::Shape input_shape,
CUDANet::Shape pool_shape,
CUDANet::Shape stride_shape,
CUDANet::Shape padding_shape,
CUDANet::Shape output_shape
) {
dim3 block(8, 8, 8);
dim3 grid(
(output_shape[0] + block.x - 1) / block.x,
(output_shape[1] + block.y - 1) / block.y,
(output_shape[2] + block.z - 1) / block.z
);
Kernels::avg_pool<<<grid, block>>>(
input.data<float>(), output.data<float>(), input_shape, output_shape, pool_shape,
stride_shape, padding_shape
);
CUDA_CHECK(cudaGetLastError());
CUDA_CHECK(cudaDeviceSynchronize());
return output;
}

View File

@@ -1,45 +0,0 @@
#include "avg_pooling.hpp"
#include "cuda_helper.cuh"
#include "pooling.cuh"
using namespace CUDANet::Layers;
void AvgPooling2d::initCUDA() {
d_output = nullptr;
CUDA_CHECK(cudaMalloc(
(void**)&d_output,
sizeof(float) * outputSize.first * outputSize.second * nChannels
));
}
void AvgPooling2d::delCUDA() {
cudaFree(d_output);
}
float* AvgPooling2d::forwardCUDA(const float* d_input) {
dim3 block(8, 8, 8);
dim3 grid(
(outputSize.first + block.x - 1) / block.x,
(outputSize.second + block.y - 1) / block.y,
(nChannels + block.z - 1) / block.z
);
Kernels::avg_pooling<<<grid, block>>>(
d_input, d_output, inputSize, outputSize, nChannels, poolingSize,
stride, padding
);
CUDA_CHECK(cudaGetLastError());
activation->activate(d_output);
CUDA_CHECK(cudaDeviceSynchronize());
return d_output;
}
void AdaptiveAvgPooling2d::initCUDA() {
cudaFree(d_output);
cudaMalloc(
(void**)&d_output,
sizeof(float) * outputSize.first * outputSize.second * nChannels
);
}

View File

@@ -18,35 +18,19 @@ AvgPool2d::AvgPool2d(
padding_shape(padding_shape),
backend(backend) {
if (in_shape.size() != 3) {
throw std::runtime_error(
std::format(
"Invalid input shape. Expected 3 dims, got {}", input_shape.size()
)
);
throw InvalidShapeException("input", 3, in_shape.size());
}
if (pool_shape.size() != 2) {
throw std::runtime_error(
std::format(
"Invalid pool shape. Expected 2 dims, got {}", pool_shape.size()
)
);
throw InvalidShapeException("pool", 2, pool_shape.size());
}
if (stride_shape.size() != 2) {
throw std::runtime_error(
std::format(
"Invalid stride shape. Expected 2 dims, got {}", stride_shape.size()
)
);
throw InvalidShapeException("stride", 2, stride_shape.size());
}
if (padding_shape.size() != 2) {
throw std::runtime_error(
std::format(
"Invalid padding shape. Expected 2 dims, got {}", padding_shape.size()
)
);
throw InvalidShapeException("padding", 2, padding_shape.size());
}
out_shape = {
@@ -65,23 +49,43 @@ AvgPool2d::AvgPool2d(
AvgPool2d::~AvgPool2d() {}
CUDANet::Tensor& AvgPool2d::forward(CUDANet::Tensor& input);
CUDANet::Tensor& AvgPool2d::forward(CUDANet::Tensor& input) {
output.zero();
backend->avgPool2d(
input,
output,
in_shape,
pool_shape,
stride_shape,
padding_shape,
out_shape
);
return output;
}
CUDANet::Shape AvgPool2d::input_shape();
CUDANet::Shape AvgPool2d::input_shape() {
return in_shape;
}
CUDANet::Shape AvgPool2d::output_shape();
CUDANet::Shape AvgPool2d::output_shape() {
return out_shape;
}
size_t AvgPool2d::input_size();
size_t AvgPool2d::input_size() {
return sizeof(float) * in_shape[0] * in_shape[1] * in_shape[2];
}
size_t AvgPool2d::output_size();
size_t AvgPool2d::output_size() {
return sizeof(float) * out_shape[0] * out_shape[1] * out_shape[3];
}
void AvgPool2d::set_weights(void* input);
void AvgPool2d::set_weights(void* input) {}
CUDANet::Tensor& AvgPool2d::get_weights();
CUDANet::Tensor& AvgPool2d::get_weights() {}
void AvgPool2d::set_biases(void* input);
void AvgPool2d::set_biases(void* input) {}
CUDANet::Tensor& AvgPool2d::get_biases();
CUDANet::Tensor& AvgPool2d::get_biases() {}
AdaptiveAvgPool2d::AdaptiveAvgPool2d(
@@ -89,15 +93,29 @@ AdaptiveAvgPool2d::AdaptiveAvgPool2d(
CUDANet::Shape output_shape,
CUDANet::Backend *backend
)
: AvgPool2d(input_shape, {1, 1}, {1, 1}, {0, 0}, backend) {
stride_shape = {
: AvgPool2d(
input_shape,
// pool_shape
{
input_shape[0] - (output_shape[0] - 1) * (input_shape[0] / output_shape[0]),
input_shape[1] - (output_shape[1] - 1) * (input_shape[1] / output_shape[1])
},
// stride_shape
{
input_shape[0] / output_shape[0],
input_shape[1] / output_shape[1]
};
pool_shape = {
input_shape[0] - (output_shape[0] - 1) * stride_shape[0],
input_shape[1] - (output_shape[1] - 1) * stride_shape[1]
};
padding_shape = {(pool_shape[0] - 1) / 2, (pool_shape[1] - 1) / 2};
},
// padding_shape
{
(input_shape[0] - (output_shape[0] - 1) * (input_shape[0] / output_shape[0]) - 1) / 2,
(input_shape[1] - (output_shape[1] - 1) * (input_shape[1] / output_shape[1]) - 1) / 2
},
backend
) {
out_shape = output_shape;
output = CUDANet::Tensor(
Shape{out_shape[0] * out_shape[1] * out_shape[2]},
CUDANet::DType::FLOAT32, backend
);
}

View File

@@ -21,47 +21,31 @@ Conv2d::Conv2d(
padding_shape(padding_shape),
backend(backend) {
if (in_shape.size() != 3) {
throw std::runtime_error(
std::format(
"Invalid input shape. Expected 3 dims, got {}", in_shape.size()
)
);
throw InvalidShapeException("input", 3, in_shape.size());
}
if (kernel_shape.size() != 3) {
throw std::runtime_error(
std::format(
"Invalid kernel shape. Expected 3 dims, got {}", kernel_shape.size()
)
);
throw InvalidShapeException("kernel", 3, kernel_shape.size());
}
if (stride_shape.size() != 2) {
throw std::runtime_error(
std::format(
"Invalid stride shape. Expected 2 dims, got {}", stride_shape.size()
)
);
throw InvalidShapeException("stride", 3, stride_shape.size());
}
if (padding_shape.size() != 2) {
throw std::runtime_error(
std::format(
"Invalid padding shape. Expected 2 dims, got {}", padding_shape.size()
)
);
throw InvalidShapeException("padding", 3, padding_shape.size());
}
size_t out_h = (in_shape[0] - kernel_shape[0] + 2 * padding_shape[0]) /
out_shape = {
(in_shape[0] - kernel_shape[0] + 2 * padding_shape[0]) /
stride_shape[0] +
1;
size_t out_w = (in_shape[1] - kernel_shape[1] + 2 * padding_shape[1]) /
1,
(in_shape[1] - kernel_shape[1] + 2 * padding_shape[1]) /
stride_shape[1] +
1;
out_shape.resize(3);
out_shape[0] = out_h;
out_shape[1] = out_w;
out_shape[2] = kernel_shape[2];
1,
kernel_shape[2]
};
output = CUDANet::Tensor(
Shape{out_shape[0] * out_shape[1] * out_shape[3]},
CUDANet::DType::FLOAT32, backend
@@ -69,7 +53,7 @@ Conv2d::Conv2d(
weights = CUDANet::Tensor(
Shape{
kernel_shape[0] * kernel_shape[1] * kernel_shape[2] * in_shape[2]
kernel_shape[0], kernel_shape[1], kernel_shape[2], in_shape[2]
},
CUDANet::DType::FLOAT32, backend
);
@@ -83,18 +67,11 @@ Conv2d::Conv2d(
Conv2d::~Conv2d() {}
CUDANet::Tensor& Conv2d::forward( CUDANet::Tensor& input) {
CUDANet::Tensor& Conv2d::forward(CUDANet::Tensor& input) {
output.zero();
backend->conv2d(
weights,
biases,
input,
output,
in_shape,
padding_shape,
kernel_shape,
stride_shape,
out_shape
weights, biases, input, output, in_shape, padding_shape, kernel_shape,
stride_shape, out_shape
);
return output;
}

View File

@@ -5,26 +5,22 @@
using namespace CUDANet::Layers;
Dense::Dense(CUDANet::Shape in, CUDANet::Shape out, CUDANet::Backend* backend)
Dense::Dense(CUDANet::Shape in_shape, CUDANet::Shape out_shape, CUDANet::Backend* backend)
: backend(backend),
in_shape(in),
out_shape(out) {
in_shape(in_shape),
out_shape(out_shape) {
if (in.size() != 1) {
throw std::runtime_error(
std::format("Invalid shape. Expected [1], got {}", in_shape)
);
if (in_shape.size() != 1) {
throw InvalidShapeException("input", 1, in_shape.size());
}
if (out.size() != 1) {
throw std::runtime_error(
std::format("Invalid shape. Expected [1], got {}", out_shape)
);
if (out_shape.size() != 1) {
throw InvalidShapeException("output", 1, out_shape.size());
}
weights = CUDANet::Tensor(Shape{in[0] * out[0]}, CUDANet::DType::FLOAT32, backend);
biases = CUDANet::Tensor(Shape{out[0]}, CUDANet::DType::FLOAT32, backend);
output = CUDANet::Tensor(Shape{out[0]}, CUDANet::DType::FLOAT32, backend);
weights = CUDANet::Tensor(Shape{out_shape[0], in_shape[0]}, CUDANet::DType::FLOAT32, backend);
biases = CUDANet::Tensor(Shape{out_shape[0]}, CUDANet::DType::FLOAT32, backend);
output = CUDANet::Tensor(Shape{out_shape[0]}, CUDANet::DType::FLOAT32, backend);
weights.zero();
biases.zero();

View File

@@ -6,27 +6,39 @@ using namespace CUDANet::Layers;
MaxPool2d::MaxPool2d(
CUDANet::Shape input_shape,
CUDANet::Shape pooling_shape,
CUDANet::Shape pool_shape,
CUDANet::Shape stride_shape,
CUDANet::Shape padding_shape,
CUDANet::Backend* backend
)
: in_shape(input_shape),
pooling_shape(pooling_shape),
pool_shape(pool_shape),
stride_shape(stride_shape),
padding_shape(padding_shape),
backend(backend) {
size_t out_h = (in_shape[0] + 2 * padding_shape[0] - pooling_shape[0]) /
stride_shape[0] +
1;
size_t out_w = (in_shape[1] + 2 * padding_shape[1] - pooling_shape[1]) /
stride_shape[1] +
1;
if (in_shape.size() != 3) {
throw InvalidShapeException("input", 3, in_shape.size());
}
out_shape.resize(3);
out_shape[0] = out_h;
out_shape[1] = out_w;
out_shape[2] = in_shape[2];
if (pool_shape.size() != 2) {
throw InvalidShapeException("pool", 2, pool_shape.size());
}
if (stride_shape.size() != 2) {
throw InvalidShapeException("stride", 2, stride_shape.size());
}
if (padding_shape.size() != 2) {
throw InvalidShapeException("padding", 2, padding_shape.size());
}
out_shape = {
(in_shape[0] + 2 * padding_shape[0] - pool_shape[0]) / stride_shape[0] +
1,
(in_shape[1] + 2 * padding_shape[1] - pool_shape[1]) / stride_shape[1] +
1,
in_shape[2]
};
output = CUDANet::Tensor(
Shape{out_shape[0] * out_shape[1] * out_shape[3]},
@@ -39,7 +51,7 @@ MaxPool2d::~MaxPool2d() {}
CUDANet::Tensor& MaxPool2d::forward(CUDANet::Tensor& input) {
output.zero();
backend->maxPool2d(
input, output, in_shape, pooling_shape, stride_shape, padding_shape,
input, output, in_shape, pool_shape, stride_shape, padding_shape,
out_shape
);
return output;