Compare commits

..

4 Commits

Author SHA1 Message Date
104d6ea33d Fix small layer issues 2025-11-22 00:33:51 +01:00
4c8b2ef537 Migrate add layer to tensors 2025-11-22 00:12:20 +01:00
aeb1739c46 Migrate concat layer 2025-11-21 23:52:58 +01:00
fd4775faa4 Migrate batch norm layer 2025-11-21 23:24:14 +01:00
21 changed files with 337 additions and 563 deletions

View File

@@ -16,6 +16,7 @@ class Backend {
// Tensor ops // Tensor ops
virtual void print(const CUDANet::Tensor& input) = 0; virtual void print(const CUDANet::Tensor& input) = 0;
virtual void zero(CUDANet::Tensor& input) = 0; virtual void zero(CUDANet::Tensor& input) = 0;
virtual void fill(CUDANet::Tensor& input, int data) = 0;
virtual void virtual void
copy_to_device(CUDANet::Tensor& tensor, void* data, size_t size) = 0; copy_to_device(CUDANet::Tensor& tensor, void* data, size_t size) = 0;
@@ -53,7 +54,7 @@ class Backend {
const CUDANet::Shape out_shape const CUDANet::Shape out_shape
) = 0; ) = 0;
virtual CUDANet::Tensor& maxPool2d( virtual CUDANet::Tensor& max_pool2d(
const CUDANet::Tensor& input, const CUDANet::Tensor& input,
CUDANet::Tensor& output, CUDANet::Tensor& output,
CUDANet::Shape input_shape, CUDANet::Shape input_shape,
@@ -63,7 +64,7 @@ class Backend {
CUDANet::Shape output_shape CUDANet::Shape output_shape
) = 0; ) = 0;
virtual CUDANet::Tensor& avgPool2d( virtual CUDANet::Tensor& avg_pool2d(
const CUDANet::Tensor& input, const CUDANet::Tensor& input,
CUDANet::Tensor& output, CUDANet::Tensor& output,
CUDANet::Shape input_shape, CUDANet::Shape input_shape,
@@ -72,6 +73,29 @@ class Backend {
CUDANet::Shape padding_shape, CUDANet::Shape padding_shape,
CUDANet::Shape output_shape CUDANet::Shape output_shape
) = 0; ) = 0;
virtual CUDANet::Tensor& batch_norm(
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
CUDANet::Shape input_shape,
CUDANet::Tensor& weights,
CUDANet::Tensor& biases,
CUDANet::Tensor& running_mean,
CUDANet::Tensor& running_var,
CUDANet::Tensor& epsilon
) = 0;
virtual CUDANet::Tensor& concat(
CUDANet::Tensor& input_a,
CUDANet::Tensor& input_b,
CUDANet::Tensor& output
) = 0;
virtual CUDANet::Tensor& add(
CUDANet::Tensor& input_a,
CUDANet::Tensor& input_b,
CUDANet::Tensor& output
) = 0;
}; };
} // namespace CUDANet } // namespace CUDANet

View File

@@ -14,6 +14,7 @@ class CUDA : public Backend {
// Tensor ops // Tensor ops
void print(const CUDANet::Tensor& input) override; void print(const CUDANet::Tensor& input) override;
void zero(CUDANet::Tensor& input) override; void zero(CUDANet::Tensor& input) override;
void fill(CUDANet::Tensor &input, int value) override;
void void
copy_to_device(CUDANet::Tensor& tensor, void* data, size_t size) override; copy_to_device(CUDANet::Tensor& tensor, void* data, size_t size) override;
void sum(const CUDANet::Tensor& input, CUDANet::Tensor& sum) override; void sum(const CUDANet::Tensor& input, CUDANet::Tensor& sum) override;
@@ -49,7 +50,7 @@ class CUDA : public Backend {
const CUDANet::Shape out_shape const CUDANet::Shape out_shape
) override; ) override;
CUDANet::Tensor& maxPool2d( CUDANet::Tensor& max_pool2d(
const CUDANet::Tensor& input, const CUDANet::Tensor& input,
CUDANet::Tensor& output, CUDANet::Tensor& output,
CUDANet::Shape input_shape, CUDANet::Shape input_shape,
@@ -59,7 +60,7 @@ class CUDA : public Backend {
CUDANet::Shape output_shape CUDANet::Shape output_shape
) override; ) override;
CUDANet::Tensor& avgPool2d( CUDANet::Tensor& avg_pool2d(
const CUDANet::Tensor& input, const CUDANet::Tensor& input,
CUDANet::Tensor& output, CUDANet::Tensor& output,
CUDANet::Shape input_shape, CUDANet::Shape input_shape,
@@ -67,7 +68,30 @@ class CUDA : public Backend {
CUDANet::Shape stride_shape, CUDANet::Shape stride_shape,
CUDANet::Shape padding_shape, CUDANet::Shape padding_shape,
CUDANet::Shape output_shape CUDANet::Shape output_shape
) = 0; ) override;
CUDANet::Tensor& batch_norm(
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
CUDANet::Shape input_shape,
CUDANet::Tensor& weights,
CUDANet::Tensor& biases,
CUDANet::Tensor& running_mean,
CUDANet::Tensor& running_var,
CUDANet::Tensor& epsilon
) override;
CUDANet::Tensor& concat(
CUDANet::Tensor& input_a,
CUDANet::Tensor& input_b,
CUDANet::Tensor& output
) override;
CUDANet::Tensor& add(
CUDANet::Tensor& input_a,
CUDANet::Tensor& input_b,
CUDANet::Tensor& output
) override;
}; };
} // namespace CUDANet::Backend } // namespace CUDANet::Backend

View File

@@ -1,49 +1,24 @@
#ifndef CUDANET_ADD_LAYER_H #pragma once
#define CUDANET_ADD_LAYER_H
#include "shape.hpp"
#include "tensor.hpp"
namespace CUDANet::Layers { namespace CUDANet::Layers {
class Add { class Add {
public: public:
/** Add(CUDANet::Shape a_shape, CUDANet::Shape b_shape, CUDANet::Backend* backend);
* @brief Create a new Add layer
*
* @param inputSize Size of the input arrays
*/
Add(int inputSize);
/**
* @brief Destroy the Add layer
*
*/
~Add(); ~Add();
/** CUDANet::Tensor&
* @brief Adds first input to second input forward(CUDANet::Tensor& input_a, CUDANet::Tensor& input_b);
*
* @param d_inputA Device pointer to the first input
* @param d_inputB Device pointer to the second input
*
*/
float* forward(const float* inputA, const float* inputB);
private: private:
int inputSize; CUDANet::Shape out_shape;
CUDANet::Tensor output;
float* output; CUDANet::Backend *backend;
float* forwardCPU(const float* inputA, const float* inputB);
#ifdef USE_CUDA
float* d_output;
int gridSize;
float* forwardCUDA(const float* d_inputA, const float* d_inputB);
void initCUDA();
void delCUDA();
#endif
}; };
} // namespace CUDANet::Layers } // namespace CUDANet::Layers
#endif // CUDANET_ADD_LAYER_H

View File

@@ -1,170 +1,54 @@
#ifndef CUDANET_BATCH_NORM_H #pragma once
#define CUDANET_BATCH_NORM_H
#include <vector>
#include "activation.hpp"
#include "layer.hpp" #include "layer.hpp"
namespace CUDANet::Layers { namespace CUDANet::Layers {
class BatchNorm2d : public WeightedLayer, public TwoDLayer { class BatchNorm2d : public Layer {
public: public:
BatchNorm2d( BatchNorm2d(CUDANet::Shape input_shape, float epsilon, CUDANet::Backend *backend);
shape2d inputSize,
int inputChannels,
float epsilon,
ActivationType activationType
);
~BatchNorm2d(); ~BatchNorm2d();
/** CUDANet::Tensor& forward(CUDANet::Tensor& input) override;
* @brief Compute the forward pass of the batchnorm layer
*
* @param d_input Device pointer to the input
* @return float* Device pointer to the output
*/
float* forward(const float* d_input);
/** CUDANet::Shape input_shape() override;
* @brief Set the weights of the batchnorm layer
*
* @param weights_input Pointer to the weights
*/
void setWeights(const float* weights_input);
/** CUDANet::Shape output_shape() override;
* @brief Get the weights of the batchnorm layer
*
* @return std::vector<float>
*/
std::vector<float> getWeights();
/** size_t input_size() override;
* @brief Set the biases of the batchnorm layer
*
* @param biases_input Pointer to the biases
*/
void setBiases(const float* biases_input);
/** size_t output_size() override;
* @brief Get the biases of the batchnorm layer
*
* @return std::vector<float>
*/
std::vector<float> getBiases();
/** void set_weights(void* input) override;
* @brief Set the Running Mean
*
* @param running_mean_input
*/
void setRunningMean(const float* running_mean_input);
/** CUDANet::Tensor& get_weights() override;
* @brief Get the Running Mean
*
*/
std::vector<float> getRunningMean();
/** void set_biases(void* input) override;
* @brief Set the Running Var
*
* @param running_mean_input
*/
void setRunningVar(const float* running_mean_input);
/** CUDANet::Tensor& get_biases() override;
* @brief Get the Running Var
*
*/
std::vector<float> getRunningVar();
/** void set_running_mean(void* input);
* @brief Get output size
*
* @return int output size
*/
int getOutputSize();
/** CUDANet::Tensor& get_running_mean();
* @brief Get input size
*
* @return int input size
*/
int getInputSize();
shape2d getOutputDims(); void set_running_var(void* input);
CUDANet::Tensor& get_running_var();
private: private:
shape2d inputSize; CUDANet::Shape in_shape;
int inputChannels; CUDANet::Tensor epsilon;
float epsilon;
int gridSize; CUDANet::Tensor running_mean;
CUDANet::Tensor running_var;
#ifdef USE_CUDA CUDANet::Tensor weights;
CUDANet::Tensor biases;
float* d_output; CUDANet::Tensor output;
float* d_running_mean; CUDANet::Backend *backend;
float* d_running_var;
float* d_length;
float* d_epsilon;
float* d_weights;
float* d_biases;
void initCUDA();
void delCUDA();
/**
* @brief Copy weights and biases to the device
*
*/
void toCuda();
float* forwardCUDA(const float* d_input);
#endif
std::vector<float> weights;
std::vector<float> biases;
std::vector<float> running_mean;
std::vector<float> running_var;
Activation* activation;
float* forwardCPU(const float* input);
/**
* @brief Initialize weights of the batchnorm layer with zeros
*
*/
void initializeWeights();
/**
* @brief Initialize biases of the batchnorm layer with zeros
*
*/
void initializeBiases();
/**
* @brief Initialize mean of the batchnorm layer with zeros
*
*/
void initializeRunningMean();
/**
* @brief Initialize sqrt of variance of the batchnorm layer with ones
*
*/
void initializeRunningVar();
}; };
} // namespace CUDANet::Layers } // namespace CUDANet::Layers
#endif // CUDANET_BATCH_NORM_H

View File

@@ -1,5 +1,4 @@
#ifndef CUDANET_CONCAT_LAYER_H #pragma once
#define CUDANET_CONCAT_LAYER_H
#include "layer.hpp" #include "layer.hpp"
@@ -11,47 +10,24 @@ namespace CUDANet::Layers {
*/ */
class Concat { class Concat {
public: public:
/**
* @brief Create a new Concat layer
*
* @param inputASize Size of the first input
* @param inputBSize Size of the second input
*/
Concat(const int inputASize, const int inputBSize);
/** Concat(const CUDANet::Shape a_shape, const CUDANet::Shape b_shape, CUDANet::Backend *backend);
* @brief Destroy the Concat layer
*
*/
~Concat(); ~Concat();
/** CUDANet::Tensor& forward(CUDANet::Tensor& input_a, CUDANet::Tensor& input_b);
* @brief Concatenates the two inputs
*
* @param d_input_A Device pointer to the first input
* @param d_input_B Device pointer to the second input
*
* @return Device pointer to the output
*/
float* forward(const float* d_input_A, const float* d_input_B);
int getOutputSize(); CUDANet::Shape output_shape();
private: private:
int inputASize; CUDANet::Shape a_shape;
int inputBSize; CUDANet::Shape b_shape;
float* forwardCPU(const float* input_A, const float* input_B); CUDANet::Shape out_shape;
CUDANet::Tensor output;
#ifdef USE_CUDA CUDANet::Backend *backend;
float* d_output;
float* forwardCUDA(const float* d_input_A, const float* d_input_B);
void initCUDA();
void delCUDA();
#endif
}; };
} // namespace CUDANet::Layers } // namespace CUDANet::Layers
#endif // CUDANET_CONCAT_LAYER_H

View File

@@ -1,8 +1,5 @@
#pragma once #pragma once
#include <vector>
#include "activation.hpp"
#include "layer.hpp" #include "layer.hpp"
namespace CUDANet::Layers { namespace CUDANet::Layers {

View File

@@ -1,7 +1,5 @@
#pragma once #pragma once
#include <vector>
#include "backend.hpp" #include "backend.hpp"
#include "layer.hpp" #include "layer.hpp"

View File

@@ -21,6 +21,30 @@ class InvalidShapeException : public std::runtime_error {
actual actual
) )
) {} ) {}
InvalidShapeException(
const std::string& message,
const Shape& shape_a,
const Shape& shape_b
)
: std::runtime_error(
std::format(
"{}. Shape A: [{}], Shape B: [{}]",
message,
format_shape(shape_a),
format_shape(shape_b)
)
) {}
private:
static std::string format_shape(const Shape& shape) {
std::string result;
for (size_t i = 0; i < shape.size(); ++i) {
if (i > 0) result += ", ";
result += std::to_string(shape[i]);
}
return result;
}
}; };
} // namespace CUDANet } // namespace CUDANet

View File

@@ -45,6 +45,11 @@ public:
void zero(); void zero();
template <typename T>
void fill(T value) {
backend->fill(*this, value);
}
template <typename T> template <typename T>
void set_data(T *data) { void set_data(T *data) {
backend->copy_to_device(*this, data, total_size); backend->copy_to_device(*this, data, total_size);

View File

@@ -2,7 +2,7 @@
#include "kernels/activation_functions.cuh" #include "kernels/activation_functions.cuh"
#include "kernels/convolution.cuh" #include "kernels/convolution.cuh"
#include "kernels/matmul.cuh" #include "kernels/matmul.cuh"
#include "kernels/pooling.cuh" #include "kernels/pool.cuh"
#include "utils/cuda_helper.cuh" #include "utils/cuda_helper.cuh"
using namespace CUDANet::Backend; using namespace CUDANet::Backend;
@@ -98,7 +98,7 @@ CUDANet::Tensor& CUDA::conv2d(
dim3 grid( dim3 grid(
(out_shape[0] + block.x - 1) / block.x, (out_shape[0] + block.x - 1) / block.x,
(out_shape[1] + block.y - 1) / block.y, (out_shape[1] + block.y - 1) / block.y,
(out_shape[3] + block.z - 1) / block.z (out_shape[2] + block.z - 1) / block.z
); );
Kernels::convolution<<<grid, block>>>( Kernels::convolution<<<grid, block>>>(
@@ -112,7 +112,7 @@ CUDANet::Tensor& CUDA::conv2d(
return output; return output;
} }
CUDANet::Tensor& CUDA::maxPool2d( CUDANet::Tensor& CUDA::max_pool2d(
const CUDANet::Tensor& input, const CUDANet::Tensor& input,
CUDANet::Tensor& output, CUDANet::Tensor& output,
CUDANet::Shape input_shape, CUDANet::Shape input_shape,
@@ -138,7 +138,7 @@ CUDANet::Tensor& CUDA::maxPool2d(
return output; return output;
} }
CUDANet::Tensor& CUDA::avgPool2d( CUDANet::Tensor& CUDA::avg_pool2d(
const CUDANet::Tensor& input, const CUDANet::Tensor& input,
CUDANet::Tensor& output, CUDANet::Tensor& output,
CUDANet::Shape input_shape, CUDANet::Shape input_shape,
@@ -163,3 +163,91 @@ CUDANet::Tensor& CUDA::avgPool2d(
return output; return output;
} }
CUDANet::Tensor& CUDA::batch_norm(
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
CUDANet::Shape input_shape,
CUDANet::Tensor& weights,
CUDANet::Tensor& biases,
CUDANet::Tensor& running_mean,
CUDANet::Tensor& running_var,
CUDANet::Tensor& epsilon
) {
auto gridSize =
(input_shape[0] * input_shape[1] + BLOCK_SIZE - 1) / BLOCK_SIZE;
for (int i = 0; i < input_shape[2]; i++) {
// Subtract mean from input
Kernels::vec_scalar_sub<<<gridSize, BLOCK_SIZE>>>(
input.data<float>() + i * input_shape[0] * input_shape[1],
output.data<float>() + i * input_shape[0] * input_shape[1],
&running_mean.data<float>()[i], input_shape[0] * input_shape[1]
);
CUDA_CHECK(cudaGetLastError());
// Divide by sqrt(running_var + epsilon)
Kernels::vec_scale<<<gridSize, BLOCK_SIZE>>>(
output.data<float>() + i * input_shape[0] * input_shape[1],
output.data<float>() + i * input_shape[0] * input_shape[1],
&running_var.data<float>()[i], epsilon.data<float>(), input_shape[0] * input_shape[1]
);
CUDA_CHECK(cudaGetLastError());
// Multiply by weights
Kernels::vec_scalar_mul<<<gridSize, BLOCK_SIZE>>>(
output.data<float>() + i * input_shape[0] * input_shape[1],
output.data<float>() + i * input_shape[0] * input_shape[1], &weights.data<float>()[i],
input_shape[0] * input_shape[1]
);
CUDA_CHECK(cudaGetLastError());
// Add biases
Kernels::vec_scalar_add<<<gridSize, BLOCK_SIZE>>>(
output.data<float>() + i * input_shape[0] * input_shape[1],
output.data<float>() + i * input_shape[0] * input_shape[1], &biases.data<float>()[i],
input_shape[0] * input_shape[1]
);
CUDA_CHECK(cudaGetLastError());
}
CUDA_CHECK(cudaDeviceSynchronize());
return output;
}
CUDANet::Tensor& CUDA::concat(
CUDANet::Tensor& input_a,
CUDANet::Tensor& input_b,
CUDANet::Tensor& output
) {
CUDA_CHECK(cudaMemcpy(
output.data<float>(), input_a.data<float>(), input_a.size(),
cudaMemcpyDeviceToDevice
));
CUDA_CHECK(cudaMemcpy(
output.data<float>() + input_a.numel(), input_b.data<float>(), input_b.size(),
cudaMemcpyDeviceToDevice
));
CUDA_CHECK(cudaGetLastError());
CUDA_CHECK(cudaDeviceSynchronize());
return output;
}
CUDANet::Tensor& CUDA::add(
CUDANet::Tensor& input_a,
CUDANet::Tensor& input_b,
CUDANet::Tensor& output
) {
auto gridSize = (input_a.numel() + BLOCK_SIZE - 1) / BLOCK_SIZE;
Kernels::vec_vec_add<<<gridSize, BLOCK_SIZE>>>(
input_a.data<float>(), input_b.data<float>(), output.data<float>(), input_a.numel()
);
CUDA_CHECK(cudaGetLastError());
CUDA_CHECK(cudaDeviceSynchronize());
return output;
}

View File

@@ -1,28 +0,0 @@
#include "add.hpp"
#include "matmul.cuh"
#include "cuda_helper.cuh"
using namespace CUDANet::Layers;
void Add::initCUDA() {
d_output = nullptr;
CUDA_CHECK(cudaMalloc((void**)&d_output, sizeof(float) * inputSize));
gridSize = (inputSize + BLOCK_SIZE - 1) / BLOCK_SIZE;
}
void Add::delCUDA() {
cudaFree(d_output);
}
float* Add::forwardCUDA(const float* d_inputA, const float* d_inputB) {
Kernels::vec_vec_add<<<gridSize, BLOCK_SIZE>>>(
d_inputA, d_inputB, d_output, inputSize
);
CUDA_CHECK(cudaGetLastError());
CUDA_CHECK(cudaDeviceSynchronize());
return d_output;
}

View File

@@ -1,120 +0,0 @@
#include <vector>
#include "activation.hpp"
#include "batch_norm.hpp"
#include "cuda_helper.cuh"
#include "layer.hpp"
#include "matmul.cuh"
#include "vector.cuh"
using namespace CUDANet::Layers;
void BatchNorm2d::initCUDA() {
d_output = nullptr;
CUDA_CHECK(cudaMalloc(
(void **)&d_output,
sizeof(float) * inputSize.first * inputSize.second * inputChannels
));
d_running_mean = nullptr;
CUDA_CHECK(
cudaMalloc((void **)&d_running_mean, sizeof(float) * inputChannels)
);
d_running_var = nullptr;
CUDA_CHECK(
cudaMalloc((void **)&d_running_var, sizeof(float) * inputChannels)
);
d_weights = nullptr;
CUDA_CHECK(cudaMalloc((void **)&d_weights, sizeof(float) * inputChannels));
d_biases = nullptr;
CUDA_CHECK(cudaMalloc((void **)&d_biases, sizeof(float) * inputChannels));
d_length = nullptr;
float length = (float)inputSize.first * inputSize.second;
CUDA_CHECK(cudaMalloc((void **)&d_length, sizeof(float)));
CUDA_CHECK(
cudaMemcpy(d_length, &length, sizeof(float), cudaMemcpyHostToDevice)
);
d_epsilon = nullptr;
CUDA_CHECK(cudaMalloc((void **)&d_epsilon, sizeof(float)));
CUDA_CHECK(
cudaMemcpy(d_epsilon, &epsilon, sizeof(float), cudaMemcpyHostToDevice)
);
gridSize =
(inputSize.first * inputSize.second + BLOCK_SIZE - 1) / BLOCK_SIZE;
}
void BatchNorm2d::delCUDA() {
cudaFree(d_output);
cudaFree(d_running_mean);
cudaFree(d_running_var);
cudaFree(d_weights);
cudaFree(d_biases);
cudaFree(d_length);
cudaFree(d_epsilon);
}
void BatchNorm2d::toCuda() {
CUDA_CHECK(cudaMemcpy(
d_weights, weights.data(), sizeof(float) * inputChannels,
cudaMemcpyHostToDevice
));
CUDA_CHECK(cudaMemcpy(
d_biases, biases.data(), sizeof(float) * inputChannels,
cudaMemcpyHostToDevice
));
CUDA_CHECK(cudaMemcpy(
d_running_mean, running_mean.data(), sizeof(float) * inputChannels,
cudaMemcpyHostToDevice
));
CUDA_CHECK(cudaMemcpy(
d_running_var, running_var.data(), sizeof(float) * inputChannels,
cudaMemcpyHostToDevice
));
}
float *BatchNorm2d::forwardCUDA(const float *d_input) {
// Compute per-channel batch normalization
for (int i = 0; i < inputChannels; i++) {
// Subtract mean from input
Kernels::vec_scalar_sub<<<gridSize, BLOCK_SIZE>>>(
d_input + i * inputSize.first * inputSize.second,
d_output + i * inputSize.first * inputSize.second,
&d_running_mean[i], inputSize.first * inputSize.second
);
CUDA_CHECK(cudaGetLastError());
// Divide by sqrt(running_var + epsilon)
Kernels::vec_scale<<<gridSize, BLOCK_SIZE>>>(
d_output + i * inputSize.first * inputSize.second,
d_output + i * inputSize.first * inputSize.second,
&d_running_var[i], d_epsilon, inputSize.first * inputSize.second
);
CUDA_CHECK(cudaGetLastError());
// Multiply by weights
Kernels::vec_scalar_mul<<<gridSize, BLOCK_SIZE>>>(
d_output + i * inputSize.first * inputSize.second,
d_output + i * inputSize.first * inputSize.second, &d_weights[i],
inputSize.first * inputSize.second
);
CUDA_CHECK(cudaGetLastError());
// Add biases
Kernels::vec_scalar_add<<<gridSize, BLOCK_SIZE>>>(
d_output + i * inputSize.first * inputSize.second,
d_output + i * inputSize.first * inputSize.second, &d_biases[i],
inputSize.first * inputSize.second
);
CUDA_CHECK(cudaGetLastError());
}
activation->activate(d_output);
return d_output;
}

View File

@@ -1,31 +0,0 @@
#include "concat.hpp"
#include "cuda_helper.cuh"
using namespace CUDANet::Layers;
void Concat::initCUDA() {
d_output = nullptr;
CUDA_CHECK(
cudaMalloc((void**)&d_output, sizeof(float) * (inputASize + inputBSize))
);
}
void Concat::delCUDA() {
cudaFree(d_output);
}
float* Concat::forwardCUDA(const float* d_input_A, const float* d_input_B) {
CUDA_CHECK(cudaMemcpy(
d_output, d_input_A, sizeof(float) * inputASize,
cudaMemcpyDeviceToDevice
));
CUDA_CHECK(cudaMemcpy(
d_output + inputASize, d_input_B, sizeof(float) * inputBSize,
cudaMemcpyDeviceToDevice
));
CUDA_CHECK(cudaDeviceSynchronize());
return d_output;
}

View File

@@ -23,7 +23,12 @@ void CUDA::print(const CUDANet::Tensor &input) {
} }
void CUDA::zero(CUDANet::Tensor &input) { void CUDA::zero(CUDANet::Tensor &input) {
CUDA_CHECK(cudaMemset(input.data<float>(), 0, sizeof(float) * input.numel())); fill(input, 0);
}
void CUDA::fill(CUDANet::Tensor &input, int value) {
CUDA_CHECK(cudaMemset(input.data<float>(), value, sizeof(float) * input.numel()));
} }
void CUDA::copy_to_device(CUDANet::Tensor &tensor, void *data, size_t size) { void CUDA::copy_to_device(CUDANet::Tensor &tensor, void *data, size_t size) {

View File

@@ -1,44 +1,28 @@
#include "add.hpp" #include "add.hpp"
#include <stddef.h>
using namespace CUDANet::Layers; using namespace CUDANet::Layers;
Add::Add(int inputSize) Add::Add(CUDANet::Shape a_shape, CUDANet::Shape b_shape, CUDANet::Backend* backend) : backend(backend) {
: inputSize(inputSize) { if (a_shape != b_shape) {
throw InvalidShapeException(
output = new float[inputSize]; "Add requires matching dimensions", a_shape, b_shape
);
#ifdef USE_CUDA
initCUDA();
#endif
}
Add::~Add() {
#ifdef USE_CUDA
delCUDA();
#endif
}
float* Add::forward(const float* inputA, const float* inputB) {
#ifdef USE_CUDA
return forwardCUDA(inputA, inputB);
#else
return forwardCPU(inputA, inputB);
#endif
}
float* Add::forwardCPU(const float* inputA, const float* inputB) {
for (size_t i = 0; i < inputSize; i++)
{
output[i] = inputA[i] + inputB[i];
} }
out_shape = a_shape;
output = CUDANet::Tensor(out_shape, CUDANet::DType::FLOAT32, backend);
}
Add::~Add() {}
CUDANet::Tensor&
Add::forward(CUDANet::Tensor& input_a, CUDANet::Tensor& input_b) {
output.zero();
backend->add(
input_a,
input_b,
output
);
return output; return output;
} }

View File

@@ -51,7 +51,7 @@ AvgPool2d::~AvgPool2d() {}
CUDANet::Tensor& AvgPool2d::forward(CUDANet::Tensor& input) { CUDANet::Tensor& AvgPool2d::forward(CUDANet::Tensor& input) {
output.zero(); output.zero();
backend->avgPool2d( backend->avg_pool2d(
input, input,
output, output,
in_shape, in_shape,
@@ -76,7 +76,7 @@ size_t AvgPool2d::input_size() {
} }
size_t AvgPool2d::output_size() { size_t AvgPool2d::output_size() {
return sizeof(float) * out_shape[0] * out_shape[1] * out_shape[3]; return sizeof(float) * out_shape[0] * out_shape[1] * out_shape[2];
} }
void AvgPool2d::set_weights(void* input) {} void AvgPool2d::set_weights(void* input) {}

View File

@@ -9,125 +9,95 @@
using namespace CUDANet::Layers; using namespace CUDANet::Layers;
BatchNorm2d::BatchNorm2d( BatchNorm2d::BatchNorm2d(
shape2d inputSize, CUDANet::Shape input_shape,
int inputChannels, float eps,
float epsilon, CUDANet::Backend *backend
ActivationType activationType
) )
: inputSize(inputSize), inputChannels(inputChannels), epsilon(epsilon) { : in_shape(input_shape), backend(backend) {
activation = new Activation(
activationType, inputSize.first * inputSize.second * inputChannels if (in_shape.size() != 3) {
throw InvalidShapeException("input", 3, in_shape.size());
}
epsilon = CUDANet::Tensor({1}, CUDANet::DType::FLOAT32, backend);
epsilon.set_data<float>(&eps);
running_mean = CUDANet::Tensor({in_shape[2]}, CUDANet::DType::FLOAT32, backend);
running_mean.zero();
running_var = CUDANet::Tensor({in_shape[2]}, CUDANet::DType::FLOAT32, backend);
running_var.fill(1);
weights = CUDANet::Tensor({in_shape[2]}, CUDANet::DType::FLOAT32, backend);
weights.fill(1);
biases = CUDANet::Tensor({in_shape[2]}, CUDANet::DType::FLOAT32, backend);
biases.zero();
output = CUDANet::Tensor(in_shape, CUDANet::DType::FLOAT32, backend);
}
BatchNorm2d::~BatchNorm2d() {}
CUDANet::Tensor& BatchNorm2d::forward(CUDANet::Tensor& input) {
output.zero();
backend->batch_norm(
input,
output,
in_shape,
weights,
biases,
running_mean,
running_var,
epsilon
); );
return output;
weights.resize(inputChannels);
biases.resize(inputChannels);
running_mean.resize(inputChannels);
running_var.resize(inputChannels);
initializeWeights();
initializeBiases();
initializeRunningMean();
initializeRunningVar();
#ifdef USE_CUDA
initCUDA();
toCuda();
#endif
} }
BatchNorm2d::~BatchNorm2d() { CUDANet::Shape BatchNorm2d::input_shape() {
#ifdef USE_CUDA return in_shape;
delCUDA();
#endif
} }
void BatchNorm2d::initializeWeights() { CUDANet::Shape BatchNorm2d::output_shape() {
std::fill(weights.begin(), weights.end(), 1.0f); return in_shape;
} }
void BatchNorm2d::initializeBiases() { size_t BatchNorm2d::input_size() {
std::fill(biases.begin(), biases.end(), 0.0f); return sizeof(float) * in_shape[0] * in_shape[1] * in_shape[2];
} }
void BatchNorm2d::initializeRunningMean() { size_t BatchNorm2d::output_size() {
std::fill(running_mean.begin(), running_mean.end(), 0.0f); return sizeof(float) * in_shape[0] * in_shape[1] * in_shape[2];
} }
void BatchNorm2d::initializeRunningVar() { void BatchNorm2d::set_weights(void* input) {
std::fill(running_var.begin(), running_var.end(), 1.0f); weights.set_data<float>(static_cast<float*>(input));
} }
void BatchNorm2d::setWeights(const float* weights_input) { CUDANet::Tensor& BatchNorm2d::get_weights() {
std::copy(weights_input, weights_input + weights.size(), weights.begin());
#ifdef USE_CUDA
toCuda();
#endif
}
std::vector<float> BatchNorm2d::getWeights() {
return weights; return weights;
} }
void BatchNorm2d::setBiases(const float* biases_input) { void BatchNorm2d::set_biases(void* input) {
std::copy(biases_input, biases_input + biases.size(), biases.begin()); biases.set_data<float>(static_cast<float*>(input));
#ifdef USE_CUDA
toCuda();
#endif
} }
std::vector<float> BatchNorm2d::getBiases() { CUDANet::Tensor& BatchNorm2d::get_biases() {
return biases; return biases;
} }
void BatchNorm2d::setRunningMean(const float* running_mean_input) { void BatchNorm2d::set_running_mean(void* input) {
std::copy( running_mean.set_data<float>(static_cast<float*>(input));
running_mean_input, running_mean_input + inputChannels,
running_mean.begin()
);
#ifdef USE_CUDA
toCuda();
#endif
} }
std::vector<float> BatchNorm2d::getRunningMean() { CUDANet::Tensor& BatchNorm2d::get_running_mean() {
return running_mean; return running_mean;
} }
void BatchNorm2d::setRunningVar(const float* running_var_input) { void BatchNorm2d::set_running_var(void* input) {
std::copy( running_var.set_data<float>(static_cast<float*>(input));
running_var_input, running_var_input + inputChannels,
running_var.begin()
);
#ifdef USE_CUDA
toCuda();
#endif
} }
std::vector<float> BatchNorm2d::getRunningVar() { CUDANet::Tensor& BatchNorm2d::get_running_var() {
return running_var; return running_var;
} }
int BatchNorm2d::getInputSize() {
return inputSize.first * inputSize.second * inputChannels;
}
int BatchNorm2d::getOutputSize() {
return inputSize.first * inputSize.second * inputChannels;
}
shape2d BatchNorm2d::getOutputDims() {
return inputSize;
}
float* BatchNorm2d::forwardCPU(const float* input) {
throw std::logic_error("Not implemented");
}
float* BatchNorm2d::forward(const float* input) {
#ifdef USE_CUDA
return forwardCUDA(input);
#else
return forwardCPU(input);
#endif
}

View File

@@ -1,34 +1,32 @@
#include <stdexcept>
#include "concat.hpp" #include "concat.hpp"
using namespace CUDANet::Layers; using namespace CUDANet::Layers;
Concat::Concat(const int inputASize, const int inputBSize) Concat::Concat(const CUDANet::Shape a_shape, const CUDANet::Shape b_shape, CUDANet::Backend *backend)
: inputASize(inputASize), inputBSize(inputBSize) { : a_shape(a_shape), b_shape(b_shape), backend(backend) {
#ifdef USE_CUDA if (a_shape[0] != b_shape[0] || a_shape[1] != b_shape[1]) {
initCUDA(); throw InvalidShapeException(
#endif "Concat requires matching height and width dimensions", a_shape,
b_shape
);
}
out_shape = {a_shape[0], a_shape[1], a_shape[2] + b_shape[2]};
output = CUDANet::Tensor(out_shape, CUDANet::DType::FLOAT32, backend);
} }
Concat::~Concat() { Concat::~Concat() {}
#ifdef USE_CUDA
delCUDA(); CUDANet::Tensor& Concat::forward(CUDANet::Tensor& input_a, CUDANet::Tensor& input_b) {
#endif output.zero();
backend->concat(
input_a,
input_b,
output
);
return output;
} }
float* Concat::forwardCPU(const float* input_A, const float* input_B) { CUDANet::Shape Concat::output_shape() {
throw std::logic_error("Not implemented"); return out_shape;
} }
float* Concat::forward(const float* input_A, const float* input_B) {
#ifdef USE_CUDA
return forwardCUDA(input_A, input_B);
#else
return forwardCPU(input_A, input_B);
#endif
}
int Concat::getOutputSize() {
return inputASize + inputBSize;
};

View File

@@ -47,7 +47,7 @@ Conv2d::Conv2d(
}; };
output = CUDANet::Tensor( output = CUDANet::Tensor(
Shape{out_shape[0] * out_shape[1] * out_shape[3]}, Shape{out_shape[0], out_shape[1], out_shape[2]},
CUDANet::DType::FLOAT32, backend CUDANet::DType::FLOAT32, backend
); );

View File

@@ -30,6 +30,7 @@ Dense::Dense(CUDANet::Shape in_shape, CUDANet::Shape out_shape, CUDANet::Backend
Dense::~Dense() {} Dense::~Dense() {}
CUDANet::Tensor& Dense::forward(CUDANet::Tensor& input) { CUDANet::Tensor& Dense::forward(CUDANet::Tensor& input) {
output.zero();
backend->dense(weights, biases, input, output, in_shape[0], out_shape[0]); backend->dense(weights, biases, input, output, in_shape[0], out_shape[0]);
return output; return output;
} }

View File

@@ -41,7 +41,7 @@ MaxPool2d::MaxPool2d(
}; };
output = CUDANet::Tensor( output = CUDANet::Tensor(
Shape{out_shape[0] * out_shape[1] * out_shape[3]}, Shape{out_shape[0] * out_shape[1] * out_shape[2]},
CUDANet::DType::FLOAT32, backend CUDANet::DType::FLOAT32, backend
); );
} }
@@ -50,7 +50,7 @@ MaxPool2d::~MaxPool2d() {}
CUDANet::Tensor& MaxPool2d::forward(CUDANet::Tensor& input) { CUDANet::Tensor& MaxPool2d::forward(CUDANet::Tensor& input) {
output.zero(); output.zero();
backend->maxPool2d( backend->max_pool2d(
input, output, in_shape, pool_shape, stride_shape, padding_shape, input, output, in_shape, pool_shape, stride_shape, padding_shape,
out_shape out_shape
); );