mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-12-22 22:34:22 +00:00
Compare commits
4 Commits
5679dc0a50
...
104d6ea33d
| Author | SHA1 | Date | |
|---|---|---|---|
| 104d6ea33d | |||
| 4c8b2ef537 | |||
| aeb1739c46 | |||
| fd4775faa4 |
@@ -16,6 +16,7 @@ class Backend {
|
||||
// Tensor ops
|
||||
virtual void print(const CUDANet::Tensor& input) = 0;
|
||||
virtual void zero(CUDANet::Tensor& input) = 0;
|
||||
virtual void fill(CUDANet::Tensor& input, int data) = 0;
|
||||
|
||||
virtual void
|
||||
copy_to_device(CUDANet::Tensor& tensor, void* data, size_t size) = 0;
|
||||
@@ -53,7 +54,7 @@ class Backend {
|
||||
const CUDANet::Shape out_shape
|
||||
) = 0;
|
||||
|
||||
virtual CUDANet::Tensor& maxPool2d(
|
||||
virtual CUDANet::Tensor& max_pool2d(
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
CUDANet::Shape input_shape,
|
||||
@@ -63,7 +64,7 @@ class Backend {
|
||||
CUDANet::Shape output_shape
|
||||
) = 0;
|
||||
|
||||
virtual CUDANet::Tensor& avgPool2d(
|
||||
virtual CUDANet::Tensor& avg_pool2d(
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
CUDANet::Shape input_shape,
|
||||
@@ -72,6 +73,29 @@ class Backend {
|
||||
CUDANet::Shape padding_shape,
|
||||
CUDANet::Shape output_shape
|
||||
) = 0;
|
||||
|
||||
virtual CUDANet::Tensor& batch_norm(
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
CUDANet::Shape input_shape,
|
||||
CUDANet::Tensor& weights,
|
||||
CUDANet::Tensor& biases,
|
||||
CUDANet::Tensor& running_mean,
|
||||
CUDANet::Tensor& running_var,
|
||||
CUDANet::Tensor& epsilon
|
||||
) = 0;
|
||||
|
||||
virtual CUDANet::Tensor& concat(
|
||||
CUDANet::Tensor& input_a,
|
||||
CUDANet::Tensor& input_b,
|
||||
CUDANet::Tensor& output
|
||||
) = 0;
|
||||
|
||||
virtual CUDANet::Tensor& add(
|
||||
CUDANet::Tensor& input_a,
|
||||
CUDANet::Tensor& input_b,
|
||||
CUDANet::Tensor& output
|
||||
) = 0;
|
||||
};
|
||||
|
||||
} // namespace CUDANet
|
||||
@@ -14,6 +14,7 @@ class CUDA : public Backend {
|
||||
// Tensor ops
|
||||
void print(const CUDANet::Tensor& input) override;
|
||||
void zero(CUDANet::Tensor& input) override;
|
||||
void fill(CUDANet::Tensor &input, int value) override;
|
||||
void
|
||||
copy_to_device(CUDANet::Tensor& tensor, void* data, size_t size) override;
|
||||
void sum(const CUDANet::Tensor& input, CUDANet::Tensor& sum) override;
|
||||
@@ -49,7 +50,7 @@ class CUDA : public Backend {
|
||||
const CUDANet::Shape out_shape
|
||||
) override;
|
||||
|
||||
CUDANet::Tensor& maxPool2d(
|
||||
CUDANet::Tensor& max_pool2d(
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
CUDANet::Shape input_shape,
|
||||
@@ -59,7 +60,7 @@ class CUDA : public Backend {
|
||||
CUDANet::Shape output_shape
|
||||
) override;
|
||||
|
||||
CUDANet::Tensor& avgPool2d(
|
||||
CUDANet::Tensor& avg_pool2d(
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
CUDANet::Shape input_shape,
|
||||
@@ -67,7 +68,30 @@ class CUDA : public Backend {
|
||||
CUDANet::Shape stride_shape,
|
||||
CUDANet::Shape padding_shape,
|
||||
CUDANet::Shape output_shape
|
||||
) = 0;
|
||||
) override;
|
||||
|
||||
CUDANet::Tensor& batch_norm(
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
CUDANet::Shape input_shape,
|
||||
CUDANet::Tensor& weights,
|
||||
CUDANet::Tensor& biases,
|
||||
CUDANet::Tensor& running_mean,
|
||||
CUDANet::Tensor& running_var,
|
||||
CUDANet::Tensor& epsilon
|
||||
) override;
|
||||
|
||||
CUDANet::Tensor& concat(
|
||||
CUDANet::Tensor& input_a,
|
||||
CUDANet::Tensor& input_b,
|
||||
CUDANet::Tensor& output
|
||||
) override;
|
||||
|
||||
CUDANet::Tensor& add(
|
||||
CUDANet::Tensor& input_a,
|
||||
CUDANet::Tensor& input_b,
|
||||
CUDANet::Tensor& output
|
||||
) override;
|
||||
};
|
||||
|
||||
} // namespace CUDANet::Backend
|
||||
@@ -1,49 +1,24 @@
|
||||
#ifndef CUDANET_ADD_LAYER_H
|
||||
#define CUDANET_ADD_LAYER_H
|
||||
#pragma once
|
||||
|
||||
#include "shape.hpp"
|
||||
#include "tensor.hpp"
|
||||
|
||||
namespace CUDANet::Layers {
|
||||
|
||||
class Add {
|
||||
public:
|
||||
/**
|
||||
* @brief Create a new Add layer
|
||||
*
|
||||
* @param inputSize Size of the input arrays
|
||||
*/
|
||||
Add(int inputSize);
|
||||
Add(CUDANet::Shape a_shape, CUDANet::Shape b_shape, CUDANet::Backend* backend);
|
||||
|
||||
/**
|
||||
* @brief Destroy the Add layer
|
||||
*
|
||||
*/
|
||||
~Add();
|
||||
|
||||
/**
|
||||
* @brief Adds first input to second input
|
||||
*
|
||||
* @param d_inputA Device pointer to the first input
|
||||
* @param d_inputB Device pointer to the second input
|
||||
*
|
||||
*/
|
||||
float* forward(const float* inputA, const float* inputB);
|
||||
CUDANet::Tensor&
|
||||
forward(CUDANet::Tensor& input_a, CUDANet::Tensor& input_b);
|
||||
|
||||
private:
|
||||
int inputSize;
|
||||
CUDANet::Shape out_shape;
|
||||
CUDANet::Tensor output;
|
||||
|
||||
float* output;
|
||||
|
||||
float* forwardCPU(const float* inputA, const float* inputB);
|
||||
|
||||
#ifdef USE_CUDA
|
||||
float* d_output;
|
||||
int gridSize;
|
||||
|
||||
float* forwardCUDA(const float* d_inputA, const float* d_inputB);
|
||||
void initCUDA();
|
||||
void delCUDA();
|
||||
#endif
|
||||
CUDANet::Backend *backend;
|
||||
};
|
||||
|
||||
} // namespace CUDANet::Layers
|
||||
|
||||
#endif // CUDANET_ADD_LAYER_H
|
||||
@@ -1,170 +1,54 @@
|
||||
#ifndef CUDANET_BATCH_NORM_H
|
||||
#define CUDANET_BATCH_NORM_H
|
||||
#pragma once
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "activation.hpp"
|
||||
#include "layer.hpp"
|
||||
|
||||
namespace CUDANet::Layers {
|
||||
|
||||
class BatchNorm2d : public WeightedLayer, public TwoDLayer {
|
||||
class BatchNorm2d : public Layer {
|
||||
public:
|
||||
BatchNorm2d(
|
||||
shape2d inputSize,
|
||||
int inputChannels,
|
||||
float epsilon,
|
||||
ActivationType activationType
|
||||
);
|
||||
BatchNorm2d(CUDANet::Shape input_shape, float epsilon, CUDANet::Backend *backend);
|
||||
|
||||
~BatchNorm2d();
|
||||
|
||||
/**
|
||||
* @brief Compute the forward pass of the batchnorm layer
|
||||
*
|
||||
* @param d_input Device pointer to the input
|
||||
* @return float* Device pointer to the output
|
||||
*/
|
||||
float* forward(const float* d_input);
|
||||
CUDANet::Tensor& forward(CUDANet::Tensor& input) override;
|
||||
|
||||
/**
|
||||
* @brief Set the weights of the batchnorm layer
|
||||
*
|
||||
* @param weights_input Pointer to the weights
|
||||
*/
|
||||
void setWeights(const float* weights_input);
|
||||
CUDANet::Shape input_shape() override;
|
||||
|
||||
/**
|
||||
* @brief Get the weights of the batchnorm layer
|
||||
*
|
||||
* @return std::vector<float>
|
||||
*/
|
||||
std::vector<float> getWeights();
|
||||
CUDANet::Shape output_shape() override;
|
||||
|
||||
/**
|
||||
* @brief Set the biases of the batchnorm layer
|
||||
*
|
||||
* @param biases_input Pointer to the biases
|
||||
*/
|
||||
void setBiases(const float* biases_input);
|
||||
size_t input_size() override;
|
||||
|
||||
/**
|
||||
* @brief Get the biases of the batchnorm layer
|
||||
*
|
||||
* @return std::vector<float>
|
||||
*/
|
||||
std::vector<float> getBiases();
|
||||
size_t output_size() override;
|
||||
|
||||
/**
|
||||
* @brief Set the Running Mean
|
||||
*
|
||||
* @param running_mean_input
|
||||
*/
|
||||
void setRunningMean(const float* running_mean_input);
|
||||
void set_weights(void* input) override;
|
||||
|
||||
/**
|
||||
* @brief Get the Running Mean
|
||||
*
|
||||
*/
|
||||
std::vector<float> getRunningMean();
|
||||
CUDANet::Tensor& get_weights() override;
|
||||
|
||||
/**
|
||||
* @brief Set the Running Var
|
||||
*
|
||||
* @param running_mean_input
|
||||
*/
|
||||
void setRunningVar(const float* running_mean_input);
|
||||
void set_biases(void* input) override;
|
||||
|
||||
/**
|
||||
* @brief Get the Running Var
|
||||
*
|
||||
*/
|
||||
std::vector<float> getRunningVar();
|
||||
CUDANet::Tensor& get_biases() override;
|
||||
|
||||
/**
|
||||
* @brief Get output size
|
||||
*
|
||||
* @return int output size
|
||||
*/
|
||||
int getOutputSize();
|
||||
void set_running_mean(void* input);
|
||||
|
||||
/**
|
||||
* @brief Get input size
|
||||
*
|
||||
* @return int input size
|
||||
*/
|
||||
int getInputSize();
|
||||
CUDANet::Tensor& get_running_mean();
|
||||
|
||||
shape2d getOutputDims();
|
||||
void set_running_var(void* input);
|
||||
|
||||
CUDANet::Tensor& get_running_var();
|
||||
|
||||
private:
|
||||
shape2d inputSize;
|
||||
int inputChannels;
|
||||
float epsilon;
|
||||
CUDANet::Shape in_shape;
|
||||
CUDANet::Tensor epsilon;
|
||||
|
||||
int gridSize;
|
||||
CUDANet::Tensor running_mean;
|
||||
CUDANet::Tensor running_var;
|
||||
|
||||
#ifdef USE_CUDA
|
||||
CUDANet::Tensor weights;
|
||||
CUDANet::Tensor biases;
|
||||
|
||||
float* d_output;
|
||||
CUDANet::Tensor output;
|
||||
|
||||
float* d_running_mean;
|
||||
float* d_running_var;
|
||||
|
||||
float* d_length;
|
||||
float* d_epsilon;
|
||||
|
||||
float* d_weights;
|
||||
float* d_biases;
|
||||
|
||||
void initCUDA();
|
||||
void delCUDA();
|
||||
|
||||
/**
|
||||
* @brief Copy weights and biases to the device
|
||||
*
|
||||
*/
|
||||
void toCuda();
|
||||
|
||||
float* forwardCUDA(const float* d_input);
|
||||
|
||||
#endif
|
||||
|
||||
std::vector<float> weights;
|
||||
std::vector<float> biases;
|
||||
|
||||
std::vector<float> running_mean;
|
||||
std::vector<float> running_var;
|
||||
|
||||
Activation* activation;
|
||||
|
||||
float* forwardCPU(const float* input);
|
||||
|
||||
/**
|
||||
* @brief Initialize weights of the batchnorm layer with zeros
|
||||
*
|
||||
*/
|
||||
void initializeWeights();
|
||||
|
||||
/**
|
||||
* @brief Initialize biases of the batchnorm layer with zeros
|
||||
*
|
||||
*/
|
||||
void initializeBiases();
|
||||
|
||||
/**
|
||||
* @brief Initialize mean of the batchnorm layer with zeros
|
||||
*
|
||||
*/
|
||||
void initializeRunningMean();
|
||||
|
||||
/**
|
||||
* @brief Initialize sqrt of variance of the batchnorm layer with ones
|
||||
*
|
||||
*/
|
||||
void initializeRunningVar();
|
||||
CUDANet::Backend *backend;
|
||||
};
|
||||
|
||||
} // namespace CUDANet::Layers
|
||||
|
||||
#endif // CUDANET_BATCH_NORM_H
|
||||
@@ -1,5 +1,4 @@
|
||||
#ifndef CUDANET_CONCAT_LAYER_H
|
||||
#define CUDANET_CONCAT_LAYER_H
|
||||
#pragma once
|
||||
|
||||
#include "layer.hpp"
|
||||
|
||||
@@ -11,47 +10,24 @@ namespace CUDANet::Layers {
|
||||
*/
|
||||
class Concat {
|
||||
public:
|
||||
/**
|
||||
* @brief Create a new Concat layer
|
||||
*
|
||||
* @param inputASize Size of the first input
|
||||
* @param inputBSize Size of the second input
|
||||
*/
|
||||
Concat(const int inputASize, const int inputBSize);
|
||||
|
||||
/**
|
||||
* @brief Destroy the Concat layer
|
||||
*
|
||||
*/
|
||||
Concat(const CUDANet::Shape a_shape, const CUDANet::Shape b_shape, CUDANet::Backend *backend);
|
||||
|
||||
~Concat();
|
||||
|
||||
/**
|
||||
* @brief Concatenates the two inputs
|
||||
*
|
||||
* @param d_input_A Device pointer to the first input
|
||||
* @param d_input_B Device pointer to the second input
|
||||
*
|
||||
* @return Device pointer to the output
|
||||
*/
|
||||
float* forward(const float* d_input_A, const float* d_input_B);
|
||||
CUDANet::Tensor& forward(CUDANet::Tensor& input_a, CUDANet::Tensor& input_b);
|
||||
|
||||
int getOutputSize();
|
||||
CUDANet::Shape output_shape();
|
||||
|
||||
private:
|
||||
int inputASize;
|
||||
int inputBSize;
|
||||
CUDANet::Shape a_shape;
|
||||
CUDANet::Shape b_shape;
|
||||
|
||||
float* forwardCPU(const float* input_A, const float* input_B);
|
||||
CUDANet::Shape out_shape;
|
||||
CUDANet::Tensor output;
|
||||
|
||||
#ifdef USE_CUDA
|
||||
float* d_output;
|
||||
float* forwardCUDA(const float* d_input_A, const float* d_input_B);
|
||||
|
||||
void initCUDA();
|
||||
void delCUDA();
|
||||
#endif
|
||||
CUDANet::Backend *backend;
|
||||
};
|
||||
|
||||
} // namespace CUDANet::Layers
|
||||
|
||||
#endif // CUDANET_CONCAT_LAYER_H
|
||||
|
||||
@@ -1,8 +1,5 @@
|
||||
#pragma once
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "activation.hpp"
|
||||
#include "layer.hpp"
|
||||
|
||||
namespace CUDANet::Layers {
|
||||
|
||||
@@ -1,7 +1,5 @@
|
||||
#pragma once
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "backend.hpp"
|
||||
#include "layer.hpp"
|
||||
|
||||
|
||||
@@ -21,6 +21,30 @@ class InvalidShapeException : public std::runtime_error {
|
||||
actual
|
||||
)
|
||||
) {}
|
||||
|
||||
InvalidShapeException(
|
||||
const std::string& message,
|
||||
const Shape& shape_a,
|
||||
const Shape& shape_b
|
||||
)
|
||||
: std::runtime_error(
|
||||
std::format(
|
||||
"{}. Shape A: [{}], Shape B: [{}]",
|
||||
message,
|
||||
format_shape(shape_a),
|
||||
format_shape(shape_b)
|
||||
)
|
||||
) {}
|
||||
|
||||
private:
|
||||
static std::string format_shape(const Shape& shape) {
|
||||
std::string result;
|
||||
for (size_t i = 0; i < shape.size(); ++i) {
|
||||
if (i > 0) result += ", ";
|
||||
result += std::to_string(shape[i]);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace CUDANet
|
||||
|
||||
@@ -45,6 +45,11 @@ public:
|
||||
|
||||
void zero();
|
||||
|
||||
template <typename T>
|
||||
void fill(T value) {
|
||||
backend->fill(*this, value);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void set_data(T *data) {
|
||||
backend->copy_to_device(*this, data, total_size);
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
#include "kernels/activation_functions.cuh"
|
||||
#include "kernels/convolution.cuh"
|
||||
#include "kernels/matmul.cuh"
|
||||
#include "kernels/pooling.cuh"
|
||||
#include "kernels/pool.cuh"
|
||||
#include "utils/cuda_helper.cuh"
|
||||
|
||||
using namespace CUDANet::Backend;
|
||||
@@ -98,7 +98,7 @@ CUDANet::Tensor& CUDA::conv2d(
|
||||
dim3 grid(
|
||||
(out_shape[0] + block.x - 1) / block.x,
|
||||
(out_shape[1] + block.y - 1) / block.y,
|
||||
(out_shape[3] + block.z - 1) / block.z
|
||||
(out_shape[2] + block.z - 1) / block.z
|
||||
);
|
||||
|
||||
Kernels::convolution<<<grid, block>>>(
|
||||
@@ -112,7 +112,7 @@ CUDANet::Tensor& CUDA::conv2d(
|
||||
return output;
|
||||
}
|
||||
|
||||
CUDANet::Tensor& CUDA::maxPool2d(
|
||||
CUDANet::Tensor& CUDA::max_pool2d(
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
CUDANet::Shape input_shape,
|
||||
@@ -138,7 +138,7 @@ CUDANet::Tensor& CUDA::maxPool2d(
|
||||
return output;
|
||||
}
|
||||
|
||||
CUDANet::Tensor& CUDA::avgPool2d(
|
||||
CUDANet::Tensor& CUDA::avg_pool2d(
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
CUDANet::Shape input_shape,
|
||||
@@ -163,3 +163,91 @@ CUDANet::Tensor& CUDA::avgPool2d(
|
||||
|
||||
return output;
|
||||
}
|
||||
|
||||
CUDANet::Tensor& CUDA::batch_norm(
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
CUDANet::Shape input_shape,
|
||||
CUDANet::Tensor& weights,
|
||||
CUDANet::Tensor& biases,
|
||||
CUDANet::Tensor& running_mean,
|
||||
CUDANet::Tensor& running_var,
|
||||
CUDANet::Tensor& epsilon
|
||||
) {
|
||||
auto gridSize =
|
||||
(input_shape[0] * input_shape[1] + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
|
||||
|
||||
for (int i = 0; i < input_shape[2]; i++) {
|
||||
// Subtract mean from input
|
||||
Kernels::vec_scalar_sub<<<gridSize, BLOCK_SIZE>>>(
|
||||
input.data<float>() + i * input_shape[0] * input_shape[1],
|
||||
output.data<float>() + i * input_shape[0] * input_shape[1],
|
||||
&running_mean.data<float>()[i], input_shape[0] * input_shape[1]
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
// Divide by sqrt(running_var + epsilon)
|
||||
Kernels::vec_scale<<<gridSize, BLOCK_SIZE>>>(
|
||||
output.data<float>() + i * input_shape[0] * input_shape[1],
|
||||
output.data<float>() + i * input_shape[0] * input_shape[1],
|
||||
&running_var.data<float>()[i], epsilon.data<float>(), input_shape[0] * input_shape[1]
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
// Multiply by weights
|
||||
Kernels::vec_scalar_mul<<<gridSize, BLOCK_SIZE>>>(
|
||||
output.data<float>() + i * input_shape[0] * input_shape[1],
|
||||
output.data<float>() + i * input_shape[0] * input_shape[1], &weights.data<float>()[i],
|
||||
input_shape[0] * input_shape[1]
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
// Add biases
|
||||
Kernels::vec_scalar_add<<<gridSize, BLOCK_SIZE>>>(
|
||||
output.data<float>() + i * input_shape[0] * input_shape[1],
|
||||
output.data<float>() + i * input_shape[0] * input_shape[1], &biases.data<float>()[i],
|
||||
input_shape[0] * input_shape[1]
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
}
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
return output;
|
||||
}
|
||||
|
||||
CUDANet::Tensor& CUDA::concat(
|
||||
CUDANet::Tensor& input_a,
|
||||
CUDANet::Tensor& input_b,
|
||||
CUDANet::Tensor& output
|
||||
) {
|
||||
CUDA_CHECK(cudaMemcpy(
|
||||
output.data<float>(), input_a.data<float>(), input_a.size(),
|
||||
cudaMemcpyDeviceToDevice
|
||||
));
|
||||
|
||||
CUDA_CHECK(cudaMemcpy(
|
||||
output.data<float>() + input_a.numel(), input_b.data<float>(), input_b.size(),
|
||||
cudaMemcpyDeviceToDevice
|
||||
));
|
||||
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
|
||||
return output;
|
||||
}
|
||||
|
||||
CUDANet::Tensor& CUDA::add(
|
||||
CUDANet::Tensor& input_a,
|
||||
CUDANet::Tensor& input_b,
|
||||
CUDANet::Tensor& output
|
||||
) {
|
||||
auto gridSize = (input_a.numel() + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
|
||||
Kernels::vec_vec_add<<<gridSize, BLOCK_SIZE>>>(
|
||||
input_a.data<float>(), input_b.data<float>(), output.data<float>(), input_a.numel()
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
|
||||
return output;
|
||||
}
|
||||
@@ -1,28 +0,0 @@
|
||||
#include "add.hpp"
|
||||
#include "matmul.cuh"
|
||||
#include "cuda_helper.cuh"
|
||||
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
void Add::initCUDA() {
|
||||
d_output = nullptr;
|
||||
CUDA_CHECK(cudaMalloc((void**)&d_output, sizeof(float) * inputSize));
|
||||
|
||||
gridSize = (inputSize + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
}
|
||||
|
||||
void Add::delCUDA() {
|
||||
cudaFree(d_output);
|
||||
}
|
||||
|
||||
float* Add::forwardCUDA(const float* d_inputA, const float* d_inputB) {
|
||||
|
||||
Kernels::vec_vec_add<<<gridSize, BLOCK_SIZE>>>(
|
||||
d_inputA, d_inputB, d_output, inputSize
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
|
||||
return d_output;
|
||||
|
||||
}
|
||||
@@ -1,120 +0,0 @@
|
||||
#include <vector>
|
||||
|
||||
#include "activation.hpp"
|
||||
#include "batch_norm.hpp"
|
||||
#include "cuda_helper.cuh"
|
||||
#include "layer.hpp"
|
||||
#include "matmul.cuh"
|
||||
#include "vector.cuh"
|
||||
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
void BatchNorm2d::initCUDA() {
|
||||
d_output = nullptr;
|
||||
CUDA_CHECK(cudaMalloc(
|
||||
(void **)&d_output,
|
||||
sizeof(float) * inputSize.first * inputSize.second * inputChannels
|
||||
));
|
||||
|
||||
d_running_mean = nullptr;
|
||||
CUDA_CHECK(
|
||||
cudaMalloc((void **)&d_running_mean, sizeof(float) * inputChannels)
|
||||
);
|
||||
|
||||
d_running_var = nullptr;
|
||||
CUDA_CHECK(
|
||||
cudaMalloc((void **)&d_running_var, sizeof(float) * inputChannels)
|
||||
);
|
||||
|
||||
d_weights = nullptr;
|
||||
CUDA_CHECK(cudaMalloc((void **)&d_weights, sizeof(float) * inputChannels));
|
||||
|
||||
d_biases = nullptr;
|
||||
CUDA_CHECK(cudaMalloc((void **)&d_biases, sizeof(float) * inputChannels));
|
||||
|
||||
d_length = nullptr;
|
||||
float length = (float)inputSize.first * inputSize.second;
|
||||
CUDA_CHECK(cudaMalloc((void **)&d_length, sizeof(float)));
|
||||
CUDA_CHECK(
|
||||
cudaMemcpy(d_length, &length, sizeof(float), cudaMemcpyHostToDevice)
|
||||
);
|
||||
|
||||
d_epsilon = nullptr;
|
||||
CUDA_CHECK(cudaMalloc((void **)&d_epsilon, sizeof(float)));
|
||||
CUDA_CHECK(
|
||||
cudaMemcpy(d_epsilon, &epsilon, sizeof(float), cudaMemcpyHostToDevice)
|
||||
);
|
||||
|
||||
gridSize =
|
||||
(inputSize.first * inputSize.second + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
}
|
||||
|
||||
void BatchNorm2d::delCUDA() {
|
||||
cudaFree(d_output);
|
||||
cudaFree(d_running_mean);
|
||||
cudaFree(d_running_var);
|
||||
cudaFree(d_weights);
|
||||
cudaFree(d_biases);
|
||||
cudaFree(d_length);
|
||||
cudaFree(d_epsilon);
|
||||
}
|
||||
|
||||
void BatchNorm2d::toCuda() {
|
||||
CUDA_CHECK(cudaMemcpy(
|
||||
d_weights, weights.data(), sizeof(float) * inputChannels,
|
||||
cudaMemcpyHostToDevice
|
||||
));
|
||||
CUDA_CHECK(cudaMemcpy(
|
||||
d_biases, biases.data(), sizeof(float) * inputChannels,
|
||||
cudaMemcpyHostToDevice
|
||||
));
|
||||
CUDA_CHECK(cudaMemcpy(
|
||||
d_running_mean, running_mean.data(), sizeof(float) * inputChannels,
|
||||
cudaMemcpyHostToDevice
|
||||
));
|
||||
CUDA_CHECK(cudaMemcpy(
|
||||
d_running_var, running_var.data(), sizeof(float) * inputChannels,
|
||||
cudaMemcpyHostToDevice
|
||||
));
|
||||
}
|
||||
|
||||
float *BatchNorm2d::forwardCUDA(const float *d_input) {
|
||||
// Compute per-channel batch normalization
|
||||
for (int i = 0; i < inputChannels; i++) {
|
||||
// Subtract mean from input
|
||||
Kernels::vec_scalar_sub<<<gridSize, BLOCK_SIZE>>>(
|
||||
d_input + i * inputSize.first * inputSize.second,
|
||||
d_output + i * inputSize.first * inputSize.second,
|
||||
&d_running_mean[i], inputSize.first * inputSize.second
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
// Divide by sqrt(running_var + epsilon)
|
||||
Kernels::vec_scale<<<gridSize, BLOCK_SIZE>>>(
|
||||
d_output + i * inputSize.first * inputSize.second,
|
||||
d_output + i * inputSize.first * inputSize.second,
|
||||
&d_running_var[i], d_epsilon, inputSize.first * inputSize.second
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
// Multiply by weights
|
||||
Kernels::vec_scalar_mul<<<gridSize, BLOCK_SIZE>>>(
|
||||
d_output + i * inputSize.first * inputSize.second,
|
||||
d_output + i * inputSize.first * inputSize.second, &d_weights[i],
|
||||
inputSize.first * inputSize.second
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
// Add biases
|
||||
Kernels::vec_scalar_add<<<gridSize, BLOCK_SIZE>>>(
|
||||
d_output + i * inputSize.first * inputSize.second,
|
||||
d_output + i * inputSize.first * inputSize.second, &d_biases[i],
|
||||
inputSize.first * inputSize.second
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
}
|
||||
|
||||
activation->activate(d_output);
|
||||
|
||||
return d_output;
|
||||
}
|
||||
@@ -1,31 +0,0 @@
|
||||
#include "concat.hpp"
|
||||
#include "cuda_helper.cuh"
|
||||
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
void Concat::initCUDA() {
|
||||
d_output = nullptr;
|
||||
CUDA_CHECK(
|
||||
cudaMalloc((void**)&d_output, sizeof(float) * (inputASize + inputBSize))
|
||||
);
|
||||
}
|
||||
|
||||
void Concat::delCUDA() {
|
||||
cudaFree(d_output);
|
||||
}
|
||||
|
||||
float* Concat::forwardCUDA(const float* d_input_A, const float* d_input_B) {
|
||||
CUDA_CHECK(cudaMemcpy(
|
||||
d_output, d_input_A, sizeof(float) * inputASize,
|
||||
cudaMemcpyDeviceToDevice
|
||||
));
|
||||
|
||||
CUDA_CHECK(cudaMemcpy(
|
||||
d_output + inputASize, d_input_B, sizeof(float) * inputBSize,
|
||||
cudaMemcpyDeviceToDevice
|
||||
));
|
||||
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
|
||||
return d_output;
|
||||
}
|
||||
@@ -23,7 +23,12 @@ void CUDA::print(const CUDANet::Tensor &input) {
|
||||
}
|
||||
|
||||
void CUDA::zero(CUDANet::Tensor &input) {
|
||||
CUDA_CHECK(cudaMemset(input.data<float>(), 0, sizeof(float) * input.numel()));
|
||||
fill(input, 0);
|
||||
}
|
||||
|
||||
void CUDA::fill(CUDANet::Tensor &input, int value) {
|
||||
CUDA_CHECK(cudaMemset(input.data<float>(), value, sizeof(float) * input.numel()));
|
||||
|
||||
}
|
||||
|
||||
void CUDA::copy_to_device(CUDANet::Tensor &tensor, void *data, size_t size) {
|
||||
|
||||
@@ -1,44 +1,28 @@
|
||||
#include "add.hpp"
|
||||
|
||||
#include <stddef.h>
|
||||
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
|
||||
Add::Add(int inputSize)
|
||||
: inputSize(inputSize) {
|
||||
|
||||
output = new float[inputSize];
|
||||
|
||||
#ifdef USE_CUDA
|
||||
initCUDA();
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
|
||||
Add::~Add() {
|
||||
#ifdef USE_CUDA
|
||||
delCUDA();
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
float* Add::forward(const float* inputA, const float* inputB) {
|
||||
|
||||
#ifdef USE_CUDA
|
||||
return forwardCUDA(inputA, inputB);
|
||||
#else
|
||||
return forwardCPU(inputA, inputB);
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
float* Add::forwardCPU(const float* inputA, const float* inputB) {
|
||||
for (size_t i = 0; i < inputSize; i++)
|
||||
{
|
||||
output[i] = inputA[i] + inputB[i];
|
||||
Add::Add(CUDANet::Shape a_shape, CUDANet::Shape b_shape, CUDANet::Backend* backend) : backend(backend) {
|
||||
if (a_shape != b_shape) {
|
||||
throw InvalidShapeException(
|
||||
"Add requires matching dimensions", a_shape, b_shape
|
||||
);
|
||||
}
|
||||
|
||||
out_shape = a_shape;
|
||||
output = CUDANet::Tensor(out_shape, CUDANet::DType::FLOAT32, backend);
|
||||
}
|
||||
|
||||
Add::~Add() {}
|
||||
|
||||
CUDANet::Tensor&
|
||||
Add::forward(CUDANet::Tensor& input_a, CUDANet::Tensor& input_b) {
|
||||
output.zero();
|
||||
backend->add(
|
||||
input_a,
|
||||
input_b,
|
||||
output
|
||||
);
|
||||
return output;
|
||||
}
|
||||
@@ -51,7 +51,7 @@ AvgPool2d::~AvgPool2d() {}
|
||||
|
||||
CUDANet::Tensor& AvgPool2d::forward(CUDANet::Tensor& input) {
|
||||
output.zero();
|
||||
backend->avgPool2d(
|
||||
backend->avg_pool2d(
|
||||
input,
|
||||
output,
|
||||
in_shape,
|
||||
@@ -76,7 +76,7 @@ size_t AvgPool2d::input_size() {
|
||||
}
|
||||
|
||||
size_t AvgPool2d::output_size() {
|
||||
return sizeof(float) * out_shape[0] * out_shape[1] * out_shape[3];
|
||||
return sizeof(float) * out_shape[0] * out_shape[1] * out_shape[2];
|
||||
}
|
||||
|
||||
void AvgPool2d::set_weights(void* input) {}
|
||||
|
||||
@@ -9,125 +9,95 @@
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
BatchNorm2d::BatchNorm2d(
|
||||
shape2d inputSize,
|
||||
int inputChannels,
|
||||
float epsilon,
|
||||
ActivationType activationType
|
||||
CUDANet::Shape input_shape,
|
||||
float eps,
|
||||
CUDANet::Backend *backend
|
||||
)
|
||||
: inputSize(inputSize), inputChannels(inputChannels), epsilon(epsilon) {
|
||||
activation = new Activation(
|
||||
activationType, inputSize.first * inputSize.second * inputChannels
|
||||
: in_shape(input_shape), backend(backend) {
|
||||
|
||||
if (in_shape.size() != 3) {
|
||||
throw InvalidShapeException("input", 3, in_shape.size());
|
||||
}
|
||||
|
||||
epsilon = CUDANet::Tensor({1}, CUDANet::DType::FLOAT32, backend);
|
||||
epsilon.set_data<float>(&eps);
|
||||
|
||||
running_mean = CUDANet::Tensor({in_shape[2]}, CUDANet::DType::FLOAT32, backend);
|
||||
running_mean.zero();
|
||||
|
||||
running_var = CUDANet::Tensor({in_shape[2]}, CUDANet::DType::FLOAT32, backend);
|
||||
running_var.fill(1);
|
||||
|
||||
weights = CUDANet::Tensor({in_shape[2]}, CUDANet::DType::FLOAT32, backend);
|
||||
weights.fill(1);
|
||||
|
||||
biases = CUDANet::Tensor({in_shape[2]}, CUDANet::DType::FLOAT32, backend);
|
||||
biases.zero();
|
||||
|
||||
output = CUDANet::Tensor(in_shape, CUDANet::DType::FLOAT32, backend);
|
||||
}
|
||||
|
||||
BatchNorm2d::~BatchNorm2d() {}
|
||||
|
||||
CUDANet::Tensor& BatchNorm2d::forward(CUDANet::Tensor& input) {
|
||||
output.zero();
|
||||
backend->batch_norm(
|
||||
input,
|
||||
output,
|
||||
in_shape,
|
||||
weights,
|
||||
biases,
|
||||
running_mean,
|
||||
running_var,
|
||||
epsilon
|
||||
);
|
||||
|
||||
weights.resize(inputChannels);
|
||||
biases.resize(inputChannels);
|
||||
|
||||
running_mean.resize(inputChannels);
|
||||
running_var.resize(inputChannels);
|
||||
|
||||
initializeWeights();
|
||||
initializeBiases();
|
||||
initializeRunningMean();
|
||||
initializeRunningVar();
|
||||
|
||||
#ifdef USE_CUDA
|
||||
initCUDA();
|
||||
toCuda();
|
||||
#endif
|
||||
return output;
|
||||
}
|
||||
|
||||
BatchNorm2d::~BatchNorm2d() {
|
||||
#ifdef USE_CUDA
|
||||
delCUDA();
|
||||
#endif
|
||||
CUDANet::Shape BatchNorm2d::input_shape() {
|
||||
return in_shape;
|
||||
}
|
||||
|
||||
void BatchNorm2d::initializeWeights() {
|
||||
std::fill(weights.begin(), weights.end(), 1.0f);
|
||||
CUDANet::Shape BatchNorm2d::output_shape() {
|
||||
return in_shape;
|
||||
}
|
||||
|
||||
void BatchNorm2d::initializeBiases() {
|
||||
std::fill(biases.begin(), biases.end(), 0.0f);
|
||||
size_t BatchNorm2d::input_size() {
|
||||
return sizeof(float) * in_shape[0] * in_shape[1] * in_shape[2];
|
||||
}
|
||||
|
||||
void BatchNorm2d::initializeRunningMean() {
|
||||
std::fill(running_mean.begin(), running_mean.end(), 0.0f);
|
||||
size_t BatchNorm2d::output_size() {
|
||||
return sizeof(float) * in_shape[0] * in_shape[1] * in_shape[2];
|
||||
}
|
||||
|
||||
void BatchNorm2d::initializeRunningVar() {
|
||||
std::fill(running_var.begin(), running_var.end(), 1.0f);
|
||||
void BatchNorm2d::set_weights(void* input) {
|
||||
weights.set_data<float>(static_cast<float*>(input));
|
||||
}
|
||||
|
||||
void BatchNorm2d::setWeights(const float* weights_input) {
|
||||
std::copy(weights_input, weights_input + weights.size(), weights.begin());
|
||||
#ifdef USE_CUDA
|
||||
toCuda();
|
||||
#endif
|
||||
}
|
||||
|
||||
std::vector<float> BatchNorm2d::getWeights() {
|
||||
CUDANet::Tensor& BatchNorm2d::get_weights() {
|
||||
return weights;
|
||||
}
|
||||
|
||||
void BatchNorm2d::setBiases(const float* biases_input) {
|
||||
std::copy(biases_input, biases_input + biases.size(), biases.begin());
|
||||
#ifdef USE_CUDA
|
||||
toCuda();
|
||||
#endif
|
||||
void BatchNorm2d::set_biases(void* input) {
|
||||
biases.set_data<float>(static_cast<float*>(input));
|
||||
}
|
||||
|
||||
std::vector<float> BatchNorm2d::getBiases() {
|
||||
CUDANet::Tensor& BatchNorm2d::get_biases() {
|
||||
return biases;
|
||||
}
|
||||
|
||||
void BatchNorm2d::setRunningMean(const float* running_mean_input) {
|
||||
std::copy(
|
||||
running_mean_input, running_mean_input + inputChannels,
|
||||
running_mean.begin()
|
||||
);
|
||||
#ifdef USE_CUDA
|
||||
toCuda();
|
||||
#endif
|
||||
void BatchNorm2d::set_running_mean(void* input) {
|
||||
running_mean.set_data<float>(static_cast<float*>(input));
|
||||
}
|
||||
|
||||
std::vector<float> BatchNorm2d::getRunningMean() {
|
||||
CUDANet::Tensor& BatchNorm2d::get_running_mean() {
|
||||
return running_mean;
|
||||
}
|
||||
|
||||
void BatchNorm2d::setRunningVar(const float* running_var_input) {
|
||||
std::copy(
|
||||
running_var_input, running_var_input + inputChannels,
|
||||
running_var.begin()
|
||||
);
|
||||
#ifdef USE_CUDA
|
||||
toCuda();
|
||||
#endif
|
||||
void BatchNorm2d::set_running_var(void* input) {
|
||||
running_var.set_data<float>(static_cast<float*>(input));
|
||||
}
|
||||
|
||||
std::vector<float> BatchNorm2d::getRunningVar() {
|
||||
CUDANet::Tensor& BatchNorm2d::get_running_var() {
|
||||
return running_var;
|
||||
}
|
||||
|
||||
int BatchNorm2d::getInputSize() {
|
||||
return inputSize.first * inputSize.second * inputChannels;
|
||||
}
|
||||
|
||||
int BatchNorm2d::getOutputSize() {
|
||||
return inputSize.first * inputSize.second * inputChannels;
|
||||
}
|
||||
|
||||
shape2d BatchNorm2d::getOutputDims() {
|
||||
return inputSize;
|
||||
}
|
||||
|
||||
float* BatchNorm2d::forwardCPU(const float* input) {
|
||||
throw std::logic_error("Not implemented");
|
||||
}
|
||||
|
||||
float* BatchNorm2d::forward(const float* input) {
|
||||
#ifdef USE_CUDA
|
||||
return forwardCUDA(input);
|
||||
#else
|
||||
return forwardCPU(input);
|
||||
#endif
|
||||
}
|
||||
@@ -1,34 +1,32 @@
|
||||
#include <stdexcept>
|
||||
|
||||
#include "concat.hpp"
|
||||
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
Concat::Concat(const int inputASize, const int inputBSize)
|
||||
: inputASize(inputASize), inputBSize(inputBSize) {
|
||||
#ifdef USE_CUDA
|
||||
initCUDA();
|
||||
#endif
|
||||
Concat::Concat(const CUDANet::Shape a_shape, const CUDANet::Shape b_shape, CUDANet::Backend *backend)
|
||||
: a_shape(a_shape), b_shape(b_shape), backend(backend) {
|
||||
if (a_shape[0] != b_shape[0] || a_shape[1] != b_shape[1]) {
|
||||
throw InvalidShapeException(
|
||||
"Concat requires matching height and width dimensions", a_shape,
|
||||
b_shape
|
||||
);
|
||||
}
|
||||
|
||||
out_shape = {a_shape[0], a_shape[1], a_shape[2] + b_shape[2]};
|
||||
output = CUDANet::Tensor(out_shape, CUDANet::DType::FLOAT32, backend);
|
||||
}
|
||||
|
||||
Concat::~Concat() {
|
||||
#ifdef USE_CUDA
|
||||
delCUDA();
|
||||
#endif
|
||||
Concat::~Concat() {}
|
||||
|
||||
CUDANet::Tensor& Concat::forward(CUDANet::Tensor& input_a, CUDANet::Tensor& input_b) {
|
||||
output.zero();
|
||||
backend->concat(
|
||||
input_a,
|
||||
input_b,
|
||||
output
|
||||
);
|
||||
return output;
|
||||
}
|
||||
|
||||
float* Concat::forwardCPU(const float* input_A, const float* input_B) {
|
||||
throw std::logic_error("Not implemented");
|
||||
CUDANet::Shape Concat::output_shape() {
|
||||
return out_shape;
|
||||
}
|
||||
|
||||
float* Concat::forward(const float* input_A, const float* input_B) {
|
||||
#ifdef USE_CUDA
|
||||
return forwardCUDA(input_A, input_B);
|
||||
#else
|
||||
return forwardCPU(input_A, input_B);
|
||||
#endif
|
||||
}
|
||||
|
||||
int Concat::getOutputSize() {
|
||||
return inputASize + inputBSize;
|
||||
};
|
||||
|
||||
@@ -47,7 +47,7 @@ Conv2d::Conv2d(
|
||||
};
|
||||
|
||||
output = CUDANet::Tensor(
|
||||
Shape{out_shape[0] * out_shape[1] * out_shape[3]},
|
||||
Shape{out_shape[0], out_shape[1], out_shape[2]},
|
||||
CUDANet::DType::FLOAT32, backend
|
||||
);
|
||||
|
||||
|
||||
@@ -30,6 +30,7 @@ Dense::Dense(CUDANet::Shape in_shape, CUDANet::Shape out_shape, CUDANet::Backend
|
||||
Dense::~Dense() {}
|
||||
|
||||
CUDANet::Tensor& Dense::forward(CUDANet::Tensor& input) {
|
||||
output.zero();
|
||||
backend->dense(weights, biases, input, output, in_shape[0], out_shape[0]);
|
||||
return output;
|
||||
}
|
||||
|
||||
@@ -41,7 +41,7 @@ MaxPool2d::MaxPool2d(
|
||||
};
|
||||
|
||||
output = CUDANet::Tensor(
|
||||
Shape{out_shape[0] * out_shape[1] * out_shape[3]},
|
||||
Shape{out_shape[0] * out_shape[1] * out_shape[2]},
|
||||
CUDANet::DType::FLOAT32, backend
|
||||
);
|
||||
}
|
||||
@@ -50,7 +50,7 @@ MaxPool2d::~MaxPool2d() {}
|
||||
|
||||
CUDANet::Tensor& MaxPool2d::forward(CUDANet::Tensor& input) {
|
||||
output.zero();
|
||||
backend->maxPool2d(
|
||||
backend->max_pool2d(
|
||||
input, output, in_shape, pool_shape, stride_shape, padding_shape,
|
||||
out_shape
|
||||
);
|
||||
|
||||
Reference in New Issue
Block a user