mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-12-22 14:24:22 +00:00
Compare commits
7 Commits
51bcee01ab
...
a97ff8e1f6
| Author | SHA1 | Date | |
|---|---|---|---|
| a97ff8e1f6 | |||
| 38cb0c9ac0 | |||
| 4161caf3e1 | |||
| 9f1a56c699 | |||
| 547cd0c224 | |||
| 1102aef293 | |||
| 82a0e7c19d |
@@ -2,6 +2,8 @@
|
||||
|
||||
#include <cstddef>
|
||||
|
||||
#include "shape.hpp"
|
||||
|
||||
namespace CUDANet {
|
||||
|
||||
// Forward declaration
|
||||
|
||||
@@ -3,7 +3,7 @@
|
||||
#include "backend.hpp"
|
||||
#include "tensor.hpp"
|
||||
|
||||
namespace CUDANet::Backend {
|
||||
namespace CUDANet::Backends {
|
||||
|
||||
class CPU : public Backend {
|
||||
public:
|
||||
@@ -24,7 +24,7 @@ do { \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
namespace CUDANet::Backend {
|
||||
namespace CUDANet::Backends {
|
||||
|
||||
class CUDA : public Backend {
|
||||
public:
|
||||
11
include/backend/cuda/cuda_backend.cuh
Normal file
11
include/backend/cuda/cuda_backend.cuh
Normal file
@@ -0,0 +1,11 @@
|
||||
#pragma once
|
||||
|
||||
// CUDA Backend Implementation
|
||||
#include "backend/cuda/cuda.cuh"
|
||||
|
||||
// CUDA Kernels
|
||||
#include "backend/cuda/kernels/activation_functions.cuh"
|
||||
#include "backend/cuda/kernels/convolution.cuh"
|
||||
#include "backend/cuda/kernels/matmul.cuh"
|
||||
#include "backend/cuda/kernels/pool.cuh"
|
||||
|
||||
@@ -1,5 +1,4 @@
|
||||
#ifndef CUDANET_ACTIVATION_FUNCTIONS_H
|
||||
#define CUDANET_ACTIVATION_FUNCTIONS_H
|
||||
#pragma once
|
||||
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
@@ -32,5 +31,3 @@ __global__ void relu(
|
||||
);
|
||||
|
||||
} // namespace CUDANet::Kernels
|
||||
|
||||
#endif // CUDANET_ACTIVATION_FUNCTIONS_H
|
||||
@@ -1,5 +1,4 @@
|
||||
#ifndef CUDANET_MATMUL_H
|
||||
#define CUDANET_MATMUL_H
|
||||
#pragma once
|
||||
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
@@ -191,5 +190,3 @@ __global__ void sum_reduce(
|
||||
);
|
||||
|
||||
} // namespace CUDANet::Kernels
|
||||
|
||||
#endif // CUDANET_MATMUL_H
|
||||
@@ -1,35 +1,55 @@
|
||||
#ifndef CUDANET_H
|
||||
#define CUDANET_H
|
||||
#pragma once
|
||||
|
||||
#ifdef USE_CUDA
|
||||
#include "activation_functions.cuh"
|
||||
#include "convolution.cuh"
|
||||
#include "matmul.cuh"
|
||||
#include "pooling.cuh"
|
||||
#endif
|
||||
// ============================================================================
|
||||
// Core Data Structures & Abstractions (BACKEND-INDEPENDENT)
|
||||
// ============================================================================
|
||||
|
||||
// Layers
|
||||
#include "activation.hpp"
|
||||
#include "add.hpp"
|
||||
#include "avg_pooling.hpp"
|
||||
#include "batch_norm.hpp"
|
||||
#include "concat.hpp"
|
||||
#include "conv2d.hpp"
|
||||
#include "dense.hpp"
|
||||
#include "input.hpp"
|
||||
#include "shape.hpp"
|
||||
#include "backend.hpp"
|
||||
#include "tensor.hpp"
|
||||
#include "layer.hpp"
|
||||
#include "max_pooling.hpp"
|
||||
#include "output.hpp"
|
||||
|
||||
// Models
|
||||
#include "model.hpp"
|
||||
// ============================================================================
|
||||
// Container Classes
|
||||
// ============================================================================
|
||||
|
||||
#include "module.hpp"
|
||||
#include "model.hpp"
|
||||
|
||||
// ============================================================================
|
||||
// Layer Implementations
|
||||
// ============================================================================
|
||||
|
||||
// Activation
|
||||
#include "layers/activation.hpp"
|
||||
|
||||
// Normalization
|
||||
#include "layers/batch_norm.hpp"
|
||||
|
||||
// Linear
|
||||
#include "layers/dense.hpp"
|
||||
|
||||
// Convolutional
|
||||
#include "layers/conv2d.hpp"
|
||||
|
||||
// Pooling
|
||||
#include "layers/max_pool.hpp"
|
||||
#include "layers/avg_pool.hpp"
|
||||
|
||||
// Composition (element-wise operations)
|
||||
#include "layers/add.hpp"
|
||||
#include "layers/concat.hpp"
|
||||
|
||||
// ============================================================================
|
||||
// Utilities
|
||||
// ============================================================================
|
||||
|
||||
#include "utils/imagenet.hpp"
|
||||
|
||||
// ============================================================================
|
||||
// Backend-Specific Includes (conditionally compiled)
|
||||
// ============================================================================
|
||||
|
||||
// Utils
|
||||
#include "imagenet.hpp"
|
||||
#ifdef USE_CUDA
|
||||
#include "cuda_helper.cuh"
|
||||
#include "vector.cuh"
|
||||
#include "backend/cuda/cuda_backend.cuh"
|
||||
#endif
|
||||
|
||||
#endif // CUDANET_H
|
||||
@@ -32,11 +32,11 @@ class Layer {
|
||||
|
||||
virtual void set_weights(void *input) = 0;
|
||||
|
||||
virtual CUDANet::Tensor& get_weights() = 0;
|
||||
virtual size_t get_weights_size() = 0;
|
||||
|
||||
virtual void set_biases(void *input) = 0;
|
||||
|
||||
virtual CUDANet::Tensor& get_biases() = 0;
|
||||
virtual size_t get_biases_size() = 0;
|
||||
};
|
||||
|
||||
} // namespace CUDANet::Layers
|
||||
|
||||
@@ -25,7 +25,7 @@ class Activation : public Layer {
|
||||
|
||||
Activation() = default;
|
||||
|
||||
Activation(CUDANet::Backend* backend, ActivationType activation, const CUDANet::Shape &shape);
|
||||
Activation(ActivationType activation, const CUDANet::Shape &shape, CUDANet::Backend* backend);
|
||||
|
||||
~Activation() = default;
|
||||
|
||||
@@ -41,11 +41,11 @@ class Activation : public Layer {
|
||||
|
||||
void set_weights(void *input) override;
|
||||
|
||||
CUDANet::Tensor& get_weights() override;
|
||||
size_t get_weights_size() override;
|
||||
|
||||
void set_biases(void *input) override;
|
||||
|
||||
CUDANet::Tensor& get_biases() override;
|
||||
size_t get_biases_size() override;
|
||||
|
||||
|
||||
private:
|
||||
|
||||
@@ -28,11 +28,11 @@ class AvgPool2d : public Layer {
|
||||
|
||||
void set_weights(void* input) override;
|
||||
|
||||
CUDANet::Tensor& get_weights() override;
|
||||
size_t get_weights_size() override;
|
||||
|
||||
void set_biases(void* input) override;
|
||||
|
||||
CUDANet::Tensor& get_biases() override;
|
||||
size_t get_biases_size() override;
|
||||
|
||||
protected:
|
||||
CUDANet::Shape in_shape;
|
||||
|
||||
@@ -22,19 +22,19 @@ class BatchNorm2d : public Layer {
|
||||
|
||||
void set_weights(void* input) override;
|
||||
|
||||
CUDANet::Tensor& get_weights() override;
|
||||
size_t get_weights_size() override;
|
||||
|
||||
void set_biases(void* input) override;
|
||||
|
||||
CUDANet::Tensor& get_biases() override;
|
||||
size_t get_biases_size() override;
|
||||
|
||||
void set_running_mean(void* input);
|
||||
|
||||
CUDANet::Tensor& get_running_mean();
|
||||
size_t get_running_mean_size();
|
||||
|
||||
void set_running_var(void* input);
|
||||
|
||||
CUDANet::Tensor& get_running_var();
|
||||
size_t get_running_var_size();
|
||||
|
||||
private:
|
||||
CUDANet::Shape in_shape;
|
||||
|
||||
@@ -18,7 +18,7 @@ class Conv2d : public Layer {
|
||||
CUDANet::Backend* backend
|
||||
);
|
||||
|
||||
~Conv2d() {};
|
||||
~Conv2d();
|
||||
|
||||
CUDANet::Tensor& forward(CUDANet::Tensor& input) override;
|
||||
|
||||
@@ -32,11 +32,11 @@ class Conv2d : public Layer {
|
||||
|
||||
void set_weights(void* input) override;
|
||||
|
||||
CUDANet::Tensor& get_weights() override;
|
||||
size_t get_weights_size() override;
|
||||
|
||||
void set_biases(void* input) override;
|
||||
|
||||
CUDANet::Tensor& get_biases() override;
|
||||
size_t get_biases_size() override;
|
||||
|
||||
CUDANet::Shape get_padding_shape();
|
||||
|
||||
|
||||
@@ -28,11 +28,11 @@ class Dense : public Layer {
|
||||
|
||||
void set_weights(void *input) override;
|
||||
|
||||
CUDANet::Tensor& get_weights() override;
|
||||
size_t get_weights_size() override;
|
||||
|
||||
void set_biases(void *input) override;
|
||||
|
||||
CUDANet::Tensor& get_biases() override;
|
||||
size_t get_biases_size() override;
|
||||
|
||||
private:
|
||||
CUDANet::Backend *backend;
|
||||
|
||||
@@ -27,11 +27,11 @@ class MaxPool2d : public Layer {
|
||||
|
||||
void set_weights(void *input) override;
|
||||
|
||||
CUDANet::Tensor& get_weights() override;
|
||||
size_t get_weights_size() override;
|
||||
|
||||
void set_biases(void *input) override;
|
||||
|
||||
CUDANet::Tensor& get_biases() override;
|
||||
size_t get_biases_size() override;
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -1,11 +1,71 @@
|
||||
#pragma once
|
||||
|
||||
#ifndef __host__
|
||||
#define __host__
|
||||
#endif
|
||||
|
||||
#ifndef __device__
|
||||
#define __device__
|
||||
#endif
|
||||
|
||||
#include <format>
|
||||
#include <vector>
|
||||
|
||||
namespace CUDANet {
|
||||
|
||||
typedef std::vector<size_t> Shape;
|
||||
struct Shape {
|
||||
static constexpr size_t MAX_DIMS = 8;
|
||||
|
||||
size_t dims[MAX_DIMS];
|
||||
size_t ndim;
|
||||
|
||||
__host__ __device__ Shape() : ndim(0) {
|
||||
for (int i = 0; i < MAX_DIMS; i++) dims[i] = 0;
|
||||
}
|
||||
|
||||
__host__ Shape(std::initializer_list<size_t> list) : ndim(list.size()) {
|
||||
if (ndim > MAX_DIMS) {
|
||||
throw std::runtime_error("Too many dimensions");
|
||||
}
|
||||
size_t i = 0;
|
||||
for (auto val : list) {
|
||||
dims[i++] = val;
|
||||
}
|
||||
for (; i < MAX_DIMS; i++) dims[i] = 0;
|
||||
}
|
||||
|
||||
__host__ Shape(const std::vector<size_t>& vec) : ndim(vec.size()) {
|
||||
if (ndim > MAX_DIMS) {
|
||||
throw std::runtime_error("Too many dimensions");
|
||||
}
|
||||
for (size_t i = 0; i < ndim; i++) {
|
||||
dims[i] = vec[i];
|
||||
}
|
||||
for (size_t i = ndim; i < MAX_DIMS; i++) dims[i] = 0;
|
||||
}
|
||||
|
||||
__host__ __device__ size_t operator[](size_t idx) const {
|
||||
return dims[idx];
|
||||
}
|
||||
|
||||
__host__ __device__ size_t& operator[](size_t idx) {
|
||||
return dims[idx];
|
||||
}
|
||||
|
||||
__host__ __device__ size_t size() const { return ndim; }
|
||||
|
||||
__host__ bool operator==(const Shape& other) const {
|
||||
if (ndim != other.ndim) return false;
|
||||
for (size_t i = 0; i < ndim; i++) {
|
||||
if (dims[i] != other.dims[i]) return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
__host__ bool operator!=(const Shape& other) const {
|
||||
return !(*this == other);
|
||||
}
|
||||
};
|
||||
|
||||
std::string format_shape(const Shape& shape) {
|
||||
std::string result;
|
||||
|
||||
@@ -1,5 +1,4 @@
|
||||
#ifndef CUDANET_IMAGENET_H
|
||||
#define CUDANET_IMAGENET_H
|
||||
#pragma once
|
||||
|
||||
#include <map>
|
||||
#include <string>
|
||||
@@ -1012,5 +1011,3 @@ const std::map <int, std::string> IMAGENET_CLASS_MAP = {
|
||||
// clang-format on
|
||||
|
||||
}
|
||||
|
||||
#endif // CUDANET_IMAGENET_H
|
||||
@@ -3,7 +3,7 @@
|
||||
#include <cstdio>
|
||||
#include <cstdlib>
|
||||
|
||||
#include "backend/cuda.cuh"
|
||||
#include "backend/cuda/cuda.cuh"
|
||||
|
||||
cudaDeviceProp initializeCUDA() {
|
||||
int deviceCount;
|
||||
@@ -25,7 +25,7 @@ cudaDeviceProp initializeCUDA() {
|
||||
return deviceProp;
|
||||
}
|
||||
|
||||
using namespace CUDANet::Backend;
|
||||
using namespace CUDANet::Backends;
|
||||
|
||||
void* CUDA::allocate(size_t bytes) {
|
||||
void* d_ptr = nullptr;
|
||||
|
||||
@@ -1,5 +1,4 @@
|
||||
#include "activation_functions.cuh"
|
||||
#include "cuda_helper.cuh"
|
||||
#include "backend/cuda/kernels/activation_functions.cuh"
|
||||
|
||||
using namespace CUDANet;
|
||||
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
#include <iostream>
|
||||
|
||||
#include "convolution.cuh"
|
||||
#include "backend/cuda/kernels/convolution.cuh"
|
||||
|
||||
using namespace CUDANet;
|
||||
|
||||
@@ -39,7 +39,7 @@ __global__ void Kernels::convolution(
|
||||
continue;
|
||||
}
|
||||
|
||||
int kernelIndex =
|
||||
int kernel_idx =
|
||||
f * kernel_shape[0] * kernel_shape[1] * input_shape[2] +
|
||||
c * kernel_shape[0] * kernel_shape[1] +
|
||||
k * kernel_shape[1] + l;
|
||||
@@ -48,7 +48,7 @@ __global__ void Kernels::convolution(
|
||||
input_shape[1] +
|
||||
(j * stride_shape[1] + l - padding_shape[1]);
|
||||
|
||||
sum += d_kernel[kernelIndex] * d_input[inputIndex];
|
||||
sum += d_kernel[kernel_idx] * d_input[inputIndex];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
#include "cuda_helper.cuh"
|
||||
#include "matmul.cuh"
|
||||
#include "backend/cuda/cuda.cuh"
|
||||
#include "backend/cuda/kernels/matmul.cuh"
|
||||
|
||||
using namespace CUDANet;
|
||||
|
||||
|
||||
@@ -1,6 +1,5 @@
|
||||
#include "cuda_helper.cuh"
|
||||
#include "layer.hpp"
|
||||
#include "pool.cuh"
|
||||
#include "backend/cuda/kernels/pool.cuh"
|
||||
|
||||
using namespace CUDANet;
|
||||
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
#include "backend/cuda.cuh"
|
||||
#include "kernels/activation_functions.cuh"
|
||||
#include "kernels/convolution.cuh"
|
||||
#include "kernels/matmul.cuh"
|
||||
#include "kernels/pool.cuh"
|
||||
#include "backend/cuda/cuda.cuh"
|
||||
#include "backend/cuda/kernels/activation_functions.cuh"
|
||||
#include "backend/cuda/kernels/convolution.cuh"
|
||||
#include "backend/cuda/kernels/matmul.cuh"
|
||||
#include "backend/cuda/kernels/pool.cuh"
|
||||
|
||||
using namespace CUDANet::Backend;
|
||||
using namespace CUDANet::Backends;
|
||||
|
||||
void CUDA::relu(Tensor& tensor) {
|
||||
int gridSize = (tensor.numel() + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
#include <iostream>
|
||||
|
||||
#include "backend.hpp"
|
||||
#include "backend/cuda.cuh"
|
||||
#include "kernels/matmul.cuh"
|
||||
#include "backend/cuda/cuda.cuh"
|
||||
#include "backend/cuda/kernels/matmul.cuh"
|
||||
|
||||
using namespace CUDANet::Backend;
|
||||
using namespace CUDANet::Backends;
|
||||
|
||||
void CUDA::print(const CUDANet::Tensor &input) {
|
||||
auto length = input.numel();
|
||||
|
||||
@@ -7,11 +7,11 @@
|
||||
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
Activation::Activation(CUDANet::Backend* backend, ActivationType activation, const CUDANet::Shape &shape)
|
||||
Activation::Activation(ActivationType activation, const CUDANet::Shape &shape, CUDANet::Backend* backend)
|
||||
: backend(backend), activationType(activation), shape(shape) {
|
||||
|
||||
if (shape.size() != 1) {
|
||||
throw std::runtime_error(std::format("Invalid shape. Expected [1], got {}", shape));
|
||||
throw InvalidShapeException("input", 1, shape.size());
|
||||
}
|
||||
|
||||
auto length = shape[0];
|
||||
@@ -59,8 +59,12 @@ size_t Activation::output_size() {
|
||||
|
||||
void Activation::set_weights(void *input) {}
|
||||
|
||||
CUDANet::Tensor& Activation::get_weights() {}
|
||||
size_t Activation::get_weights_size() {
|
||||
return 0;
|
||||
}
|
||||
|
||||
void Activation::set_biases(void *input) {}
|
||||
|
||||
CUDANet::Tensor& Activation::get_biases() {}
|
||||
size_t Activation::get_biases_size() {
|
||||
return 0;
|
||||
}
|
||||
@@ -81,11 +81,15 @@ size_t AvgPool2d::output_size() {
|
||||
|
||||
void AvgPool2d::set_weights(void* input) {}
|
||||
|
||||
CUDANet::Tensor& AvgPool2d::get_weights() {}
|
||||
size_t AvgPool2d::get_weights_size() {
|
||||
return 0;
|
||||
}
|
||||
|
||||
void AvgPool2d::set_biases(void* input) {}
|
||||
|
||||
CUDANet::Tensor& AvgPool2d::get_biases() {}
|
||||
size_t AvgPool2d::get_biases_size() {
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
AdaptiveAvgPool2d::AdaptiveAvgPool2d(
|
||||
|
||||
@@ -74,30 +74,30 @@ void BatchNorm2d::set_weights(void* input) {
|
||||
weights.set_data<float>(static_cast<float*>(input));
|
||||
}
|
||||
|
||||
CUDANet::Tensor& BatchNorm2d::get_weights() {
|
||||
return weights;
|
||||
size_t BatchNorm2d::get_weights_size() {
|
||||
return weights.size();
|
||||
}
|
||||
|
||||
void BatchNorm2d::set_biases(void* input) {
|
||||
biases.set_data<float>(static_cast<float*>(input));
|
||||
}
|
||||
|
||||
CUDANet::Tensor& BatchNorm2d::get_biases() {
|
||||
return biases;
|
||||
size_t BatchNorm2d::get_biases_size() {
|
||||
return biases.size();
|
||||
}
|
||||
|
||||
void BatchNorm2d::set_running_mean(void* input) {
|
||||
running_mean.set_data<float>(static_cast<float*>(input));
|
||||
}
|
||||
|
||||
CUDANet::Tensor& BatchNorm2d::get_running_mean() {
|
||||
return running_mean;
|
||||
size_t BatchNorm2d::get_running_mean_size() {
|
||||
return running_mean.size();
|
||||
}
|
||||
|
||||
void BatchNorm2d::set_running_var(void* input) {
|
||||
running_var.set_data<float>(static_cast<float*>(input));
|
||||
}
|
||||
|
||||
CUDANet::Tensor& BatchNorm2d::get_running_var() {
|
||||
return running_var;
|
||||
size_t BatchNorm2d::get_running_var_size() {
|
||||
return running_var.size();
|
||||
}
|
||||
@@ -96,16 +96,16 @@ void Conv2d::set_weights(void* input) {
|
||||
weights.set_data<float>(static_cast<float*>(input));
|
||||
}
|
||||
|
||||
CUDANet::Tensor& Conv2d::get_weights() {
|
||||
return weights;
|
||||
size_t Conv2d::get_weights_size() {
|
||||
return weights.size();
|
||||
}
|
||||
|
||||
void Conv2d::set_biases(void* input) {
|
||||
biases.set_data<float>(static_cast<float*>(input));
|
||||
}
|
||||
|
||||
CUDANet::Tensor& Conv2d::get_biases() {
|
||||
return biases;
|
||||
size_t Conv2d::get_biases_size() {
|
||||
return biases.size();
|
||||
}
|
||||
|
||||
CUDANet::Shape Conv2d::get_padding_shape() {
|
||||
|
||||
@@ -55,14 +55,14 @@ void Dense::set_weights(void* input) {
|
||||
weights.set_data<float>(static_cast<float*>(input));
|
||||
}
|
||||
|
||||
CUDANet::Tensor& Dense::get_weights() {
|
||||
return weights;
|
||||
size_t Dense::get_weights_size() {
|
||||
return weights.size();
|
||||
}
|
||||
|
||||
void Dense::set_biases(void* input) {
|
||||
biases.set_data<float>(static_cast<float*>(input));
|
||||
}
|
||||
|
||||
CUDANet::Tensor& Dense::get_biases() {
|
||||
return biases;
|
||||
size_t Dense::get_biases_size() {
|
||||
return biases.size();
|
||||
}
|
||||
@@ -75,8 +75,12 @@ size_t MaxPool2d::output_size() {
|
||||
|
||||
void MaxPool2d::set_weights(void* input) {}
|
||||
|
||||
CUDANet::Tensor& MaxPool2d::get_weights() {}
|
||||
size_t MaxPool2d::get_weights_size() {
|
||||
return 0;
|
||||
}
|
||||
|
||||
void MaxPool2d::set_biases(void* input) {}
|
||||
|
||||
CUDANet::Tensor& MaxPool2d::get_biases() {}
|
||||
size_t MaxPool2d::get_biases_size() {
|
||||
return 0;
|
||||
}
|
||||
@@ -128,20 +128,20 @@ void Model::load_weights(const std::string& path) {
|
||||
Layer* layer = layer_map[tensor_info.name];
|
||||
|
||||
if (tensor_info.type == TensorType::WEIGHT) {
|
||||
if (layer->get_weights().size() != values.size()) {
|
||||
if (layer->get_weights_size() != values.size()) {
|
||||
std::cerr << "Layer: " << tensor_info.name
|
||||
<< " has incorrect number of weights, expected "
|
||||
<< layer->get_weights().size() << " but got "
|
||||
<< layer->get_weights_size() << " but got "
|
||||
<< values.size() << ", skipping" << std::endl;
|
||||
continue;
|
||||
}
|
||||
|
||||
layer->set_weights(values.data());
|
||||
} else if (tensor_info.type == TensorType::BIAS) {
|
||||
if (layer->get_biases().size() != values.size()) {
|
||||
if (layer->get_biases_size() != values.size()) {
|
||||
std::cerr << "Layer: " << tensor_info.name
|
||||
<< " has incorrect number of biases, expected "
|
||||
<< layer->get_biases().size() << " but got "
|
||||
<< layer->get_biases_size() << " but got "
|
||||
<< values.size() << ", skipping" << std::endl;
|
||||
continue;
|
||||
}
|
||||
@@ -155,16 +155,16 @@ void Model::load_weights(const std::string& path) {
|
||||
}
|
||||
|
||||
if (tensor_info.type == TensorType::RUNNING_MEAN) {
|
||||
if (bn_layer->get_running_mean().size() != values.size()) {
|
||||
if (bn_layer->get_running_mean_size() != values.size()) {
|
||||
std::cerr << "Layer: " << tensor_info.name << " has incorrect number of running mean values, expected "
|
||||
<< bn_layer->get_running_mean().size() << " but got " << values.size() << ", skipping" << std::endl;
|
||||
<< bn_layer->get_running_mean_size() << " but got " << values.size() << ", skipping" << std::endl;
|
||||
continue;
|
||||
}
|
||||
bn_layer->set_running_mean(values.data());
|
||||
} else if (tensor_info.type == TensorType::RUNNING_VAR) {
|
||||
if (bn_layer->get_running_var().size() != values.size()) {
|
||||
if (bn_layer->get_running_var_size() != values.size()) {
|
||||
std::cerr << "Layer: " << tensor_info.name << " has incorrect number of running var values, expected "
|
||||
<< bn_layer->get_running_var().size() << " but got " << values.size() << ", skipping" << std::endl;
|
||||
<< bn_layer->get_running_var_size() << " but got " << values.size() << ", skipping" << std::endl;
|
||||
continue;
|
||||
}
|
||||
bn_layer->set_running_var(values.data());
|
||||
|
||||
Reference in New Issue
Block a user