Migrate batch norm layer

This commit is contained in:
2025-11-21 23:24:14 +01:00
parent 5679dc0a50
commit fd4775faa4
11 changed files with 181 additions and 364 deletions

View File

@@ -9,125 +9,95 @@
using namespace CUDANet::Layers;
BatchNorm2d::BatchNorm2d(
shape2d inputSize,
int inputChannels,
float epsilon,
ActivationType activationType
CUDANet::Shape input_shape,
float eps,
CUDANet::Backend *backend
)
: inputSize(inputSize), inputChannels(inputChannels), epsilon(epsilon) {
activation = new Activation(
activationType, inputSize.first * inputSize.second * inputChannels
: in_shape(input_shape), backend(backend) {
if (in_shape.size() != 3) {
throw InvalidShapeException("input", 3, in_shape.size());
}
epsilon = CUDANet::Tensor({1}, CUDANet::DType::FLOAT32, backend);
epsilon.set_data<float>(&eps);
running_mean = CUDANet::Tensor({in_shape[2]}, CUDANet::DType::FLOAT32, backend);
running_mean.zero();
running_var = CUDANet::Tensor({in_shape[2]}, CUDANet::DType::FLOAT32, backend);
running_var.fill(1);
weights = CUDANet::Tensor({in_shape[2]}, CUDANet::DType::FLOAT32, backend);
weights.fill(1);
biases = CUDANet::Tensor({in_shape[2]}, CUDANet::DType::FLOAT32, backend);
biases.zero();
output = CUDANet::Tensor(in_shape, CUDANet::DType::FLOAT32, backend);
}
BatchNorm2d::~BatchNorm2d() {}
CUDANet::Tensor& BatchNorm2d::forward(CUDANet::Tensor& input) {
output.zero();
backend->batch_norm(
input,
output,
in_shape,
weights,
biases,
running_mean,
running_var,
epsilon
);
weights.resize(inputChannels);
biases.resize(inputChannels);
running_mean.resize(inputChannels);
running_var.resize(inputChannels);
initializeWeights();
initializeBiases();
initializeRunningMean();
initializeRunningVar();
#ifdef USE_CUDA
initCUDA();
toCuda();
#endif
return output;
}
BatchNorm2d::~BatchNorm2d() {
#ifdef USE_CUDA
delCUDA();
#endif
CUDANet::Shape BatchNorm2d::input_shape() {
return in_shape;
}
void BatchNorm2d::initializeWeights() {
std::fill(weights.begin(), weights.end(), 1.0f);
CUDANet::Shape BatchNorm2d::output_shape() {
return in_shape;
}
void BatchNorm2d::initializeBiases() {
std::fill(biases.begin(), biases.end(), 0.0f);
size_t BatchNorm2d::input_size() {
return sizeof(float) * in_shape[0] * in_shape[1] * in_shape[2];
}
void BatchNorm2d::initializeRunningMean() {
std::fill(running_mean.begin(), running_mean.end(), 0.0f);
size_t BatchNorm2d::output_size() {
return sizeof(float) * in_shape[0] * in_shape[1] * in_shape[2];
}
void BatchNorm2d::initializeRunningVar() {
std::fill(running_var.begin(), running_var.end(), 1.0f);
void BatchNorm2d::set_weights(void* input) {
weights.set_data<float>(static_cast<float*>(input));
}
void BatchNorm2d::setWeights(const float* weights_input) {
std::copy(weights_input, weights_input + weights.size(), weights.begin());
#ifdef USE_CUDA
toCuda();
#endif
}
std::vector<float> BatchNorm2d::getWeights() {
CUDANet::Tensor& BatchNorm2d::get_weights() {
return weights;
}
void BatchNorm2d::setBiases(const float* biases_input) {
std::copy(biases_input, biases_input + biases.size(), biases.begin());
#ifdef USE_CUDA
toCuda();
#endif
void BatchNorm2d::set_biases(void* input) {
biases.set_data<float>(static_cast<float*>(input));
}
std::vector<float> BatchNorm2d::getBiases() {
CUDANet::Tensor& BatchNorm2d::get_biases() {
return biases;
}
void BatchNorm2d::setRunningMean(const float* running_mean_input) {
std::copy(
running_mean_input, running_mean_input + inputChannels,
running_mean.begin()
);
#ifdef USE_CUDA
toCuda();
#endif
void BatchNorm2d::set_running_mean(void* input) {
running_mean.set_data<float>(static_cast<float*>(input));
}
std::vector<float> BatchNorm2d::getRunningMean() {
CUDANet::Tensor& BatchNorm2d::get_running_mean() {
return running_mean;
}
void BatchNorm2d::setRunningVar(const float* running_var_input) {
std::copy(
running_var_input, running_var_input + inputChannels,
running_var.begin()
);
#ifdef USE_CUDA
toCuda();
#endif
void BatchNorm2d::set_running_var(void* input) {
running_var.set_data<float>(static_cast<float*>(input));
}
std::vector<float> BatchNorm2d::getRunningVar() {
CUDANet::Tensor& BatchNorm2d::get_running_var() {
return running_var;
}
int BatchNorm2d::getInputSize() {
return inputSize.first * inputSize.second * inputChannels;
}
int BatchNorm2d::getOutputSize() {
return inputSize.first * inputSize.second * inputChannels;
}
shape2d BatchNorm2d::getOutputDims() {
return inputSize;
}
float* BatchNorm2d::forwardCPU(const float* input) {
throw std::logic_error("Not implemented");
}
float* BatchNorm2d::forward(const float* input) {
#ifdef USE_CUDA
return forwardCUDA(input);
#else
return forwardCPU(input);
#endif
}