mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-12-22 14:24:22 +00:00
Migrate batch norm layer
This commit is contained in:
@@ -2,7 +2,7 @@
|
||||
#include "kernels/activation_functions.cuh"
|
||||
#include "kernels/convolution.cuh"
|
||||
#include "kernels/matmul.cuh"
|
||||
#include "kernels/pooling.cuh"
|
||||
#include "kernels/pool.cuh"
|
||||
#include "utils/cuda_helper.cuh"
|
||||
|
||||
using namespace CUDANet::Backend;
|
||||
@@ -112,7 +112,7 @@ CUDANet::Tensor& CUDA::conv2d(
|
||||
return output;
|
||||
}
|
||||
|
||||
CUDANet::Tensor& CUDA::maxPool2d(
|
||||
CUDANet::Tensor& CUDA::max_pool2d(
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
CUDANet::Shape input_shape,
|
||||
@@ -138,7 +138,7 @@ CUDANet::Tensor& CUDA::maxPool2d(
|
||||
return output;
|
||||
}
|
||||
|
||||
CUDANet::Tensor& CUDA::avgPool2d(
|
||||
CUDANet::Tensor& CUDA::avg_pool2d(
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
CUDANet::Shape input_shape,
|
||||
@@ -162,4 +162,53 @@ CUDANet::Tensor& CUDA::avgPool2d(
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
|
||||
return output;
|
||||
}
|
||||
|
||||
CUDANet::Tensor& CUDA::batch_norm(
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
CUDANet::Shape input_shape,
|
||||
CUDANet::Tensor& weights,
|
||||
CUDANet::Tensor& biases,
|
||||
CUDANet::Tensor& running_mean,
|
||||
CUDANet::Tensor& running_var,
|
||||
CUDANet::Tensor& epsilon
|
||||
) {
|
||||
auto gridSize =
|
||||
(input_shape[0] * input_shape[1] + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
|
||||
|
||||
for (int i = 0; i < input_shape[2]; i++) {
|
||||
// Subtract mean from input
|
||||
Kernels::vec_scalar_sub<<<gridSize, BLOCK_SIZE>>>(
|
||||
input.data<float>() + i * input_shape[0] * input_shape[1],
|
||||
output.data<float>() + i * input_shape[0] * input_shape[1],
|
||||
&running_mean.data<float>()[i], input_shape[0] * input_shape[1]
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
// Divide by sqrt(running_var + epsilon)
|
||||
Kernels::vec_scale<<<gridSize, BLOCK_SIZE>>>(
|
||||
output.data<float>() + i * input_shape[0] * input_shape[1],
|
||||
output.data<float>() + i * input_shape[0] * input_shape[1],
|
||||
&running_var.data<float>()[i], epsilon.data<float>(), input_shape[0] * input_shape[1]
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
// Multiply by weights
|
||||
Kernels::vec_scalar_mul<<<gridSize, BLOCK_SIZE>>>(
|
||||
output.data<float>() + i * input_shape[0] * input_shape[1],
|
||||
output.data<float>() + i * input_shape[0] * input_shape[1], &weights.data<float>()[i],
|
||||
input_shape[0] * input_shape[1]
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
// Add biases
|
||||
Kernels::vec_scalar_add<<<gridSize, BLOCK_SIZE>>>(
|
||||
output.data<float>() + i * input_shape[0] * input_shape[1],
|
||||
output.data<float>() + i * input_shape[0] * input_shape[1], &biases.data<float>()[i],
|
||||
input_shape[0] * input_shape[1]
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
}
|
||||
}
|
||||
@@ -1,120 +0,0 @@
|
||||
#include <vector>
|
||||
|
||||
#include "activation.hpp"
|
||||
#include "batch_norm.hpp"
|
||||
#include "cuda_helper.cuh"
|
||||
#include "layer.hpp"
|
||||
#include "matmul.cuh"
|
||||
#include "vector.cuh"
|
||||
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
void BatchNorm2d::initCUDA() {
|
||||
d_output = nullptr;
|
||||
CUDA_CHECK(cudaMalloc(
|
||||
(void **)&d_output,
|
||||
sizeof(float) * inputSize.first * inputSize.second * inputChannels
|
||||
));
|
||||
|
||||
d_running_mean = nullptr;
|
||||
CUDA_CHECK(
|
||||
cudaMalloc((void **)&d_running_mean, sizeof(float) * inputChannels)
|
||||
);
|
||||
|
||||
d_running_var = nullptr;
|
||||
CUDA_CHECK(
|
||||
cudaMalloc((void **)&d_running_var, sizeof(float) * inputChannels)
|
||||
);
|
||||
|
||||
d_weights = nullptr;
|
||||
CUDA_CHECK(cudaMalloc((void **)&d_weights, sizeof(float) * inputChannels));
|
||||
|
||||
d_biases = nullptr;
|
||||
CUDA_CHECK(cudaMalloc((void **)&d_biases, sizeof(float) * inputChannels));
|
||||
|
||||
d_length = nullptr;
|
||||
float length = (float)inputSize.first * inputSize.second;
|
||||
CUDA_CHECK(cudaMalloc((void **)&d_length, sizeof(float)));
|
||||
CUDA_CHECK(
|
||||
cudaMemcpy(d_length, &length, sizeof(float), cudaMemcpyHostToDevice)
|
||||
);
|
||||
|
||||
d_epsilon = nullptr;
|
||||
CUDA_CHECK(cudaMalloc((void **)&d_epsilon, sizeof(float)));
|
||||
CUDA_CHECK(
|
||||
cudaMemcpy(d_epsilon, &epsilon, sizeof(float), cudaMemcpyHostToDevice)
|
||||
);
|
||||
|
||||
gridSize =
|
||||
(inputSize.first * inputSize.second + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
}
|
||||
|
||||
void BatchNorm2d::delCUDA() {
|
||||
cudaFree(d_output);
|
||||
cudaFree(d_running_mean);
|
||||
cudaFree(d_running_var);
|
||||
cudaFree(d_weights);
|
||||
cudaFree(d_biases);
|
||||
cudaFree(d_length);
|
||||
cudaFree(d_epsilon);
|
||||
}
|
||||
|
||||
void BatchNorm2d::toCuda() {
|
||||
CUDA_CHECK(cudaMemcpy(
|
||||
d_weights, weights.data(), sizeof(float) * inputChannels,
|
||||
cudaMemcpyHostToDevice
|
||||
));
|
||||
CUDA_CHECK(cudaMemcpy(
|
||||
d_biases, biases.data(), sizeof(float) * inputChannels,
|
||||
cudaMemcpyHostToDevice
|
||||
));
|
||||
CUDA_CHECK(cudaMemcpy(
|
||||
d_running_mean, running_mean.data(), sizeof(float) * inputChannels,
|
||||
cudaMemcpyHostToDevice
|
||||
));
|
||||
CUDA_CHECK(cudaMemcpy(
|
||||
d_running_var, running_var.data(), sizeof(float) * inputChannels,
|
||||
cudaMemcpyHostToDevice
|
||||
));
|
||||
}
|
||||
|
||||
float *BatchNorm2d::forwardCUDA(const float *d_input) {
|
||||
// Compute per-channel batch normalization
|
||||
for (int i = 0; i < inputChannels; i++) {
|
||||
// Subtract mean from input
|
||||
Kernels::vec_scalar_sub<<<gridSize, BLOCK_SIZE>>>(
|
||||
d_input + i * inputSize.first * inputSize.second,
|
||||
d_output + i * inputSize.first * inputSize.second,
|
||||
&d_running_mean[i], inputSize.first * inputSize.second
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
// Divide by sqrt(running_var + epsilon)
|
||||
Kernels::vec_scale<<<gridSize, BLOCK_SIZE>>>(
|
||||
d_output + i * inputSize.first * inputSize.second,
|
||||
d_output + i * inputSize.first * inputSize.second,
|
||||
&d_running_var[i], d_epsilon, inputSize.first * inputSize.second
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
// Multiply by weights
|
||||
Kernels::vec_scalar_mul<<<gridSize, BLOCK_SIZE>>>(
|
||||
d_output + i * inputSize.first * inputSize.second,
|
||||
d_output + i * inputSize.first * inputSize.second, &d_weights[i],
|
||||
inputSize.first * inputSize.second
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
// Add biases
|
||||
Kernels::vec_scalar_add<<<gridSize, BLOCK_SIZE>>>(
|
||||
d_output + i * inputSize.first * inputSize.second,
|
||||
d_output + i * inputSize.first * inputSize.second, &d_biases[i],
|
||||
inputSize.first * inputSize.second
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
}
|
||||
|
||||
activation->activate(d_output);
|
||||
|
||||
return d_output;
|
||||
}
|
||||
@@ -23,7 +23,12 @@ void CUDA::print(const CUDANet::Tensor &input) {
|
||||
}
|
||||
|
||||
void CUDA::zero(CUDANet::Tensor &input) {
|
||||
CUDA_CHECK(cudaMemset(input.data<float>(), 0, sizeof(float) * input.numel()));
|
||||
fill(input, 0);
|
||||
}
|
||||
|
||||
void CUDA::fill(CUDANet::Tensor &input, int value) {
|
||||
CUDA_CHECK(cudaMemset(input.data<float>(), value, sizeof(float) * input.numel()));
|
||||
|
||||
}
|
||||
|
||||
void CUDA::copy_to_device(CUDANet::Tensor &tensor, void *data, size_t size) {
|
||||
|
||||
@@ -51,7 +51,7 @@ AvgPool2d::~AvgPool2d() {}
|
||||
|
||||
CUDANet::Tensor& AvgPool2d::forward(CUDANet::Tensor& input) {
|
||||
output.zero();
|
||||
backend->avgPool2d(
|
||||
backend->avg_pool2d(
|
||||
input,
|
||||
output,
|
||||
in_shape,
|
||||
|
||||
@@ -9,125 +9,95 @@
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
BatchNorm2d::BatchNorm2d(
|
||||
shape2d inputSize,
|
||||
int inputChannels,
|
||||
float epsilon,
|
||||
ActivationType activationType
|
||||
CUDANet::Shape input_shape,
|
||||
float eps,
|
||||
CUDANet::Backend *backend
|
||||
)
|
||||
: inputSize(inputSize), inputChannels(inputChannels), epsilon(epsilon) {
|
||||
activation = new Activation(
|
||||
activationType, inputSize.first * inputSize.second * inputChannels
|
||||
: in_shape(input_shape), backend(backend) {
|
||||
|
||||
if (in_shape.size() != 3) {
|
||||
throw InvalidShapeException("input", 3, in_shape.size());
|
||||
}
|
||||
|
||||
epsilon = CUDANet::Tensor({1}, CUDANet::DType::FLOAT32, backend);
|
||||
epsilon.set_data<float>(&eps);
|
||||
|
||||
running_mean = CUDANet::Tensor({in_shape[2]}, CUDANet::DType::FLOAT32, backend);
|
||||
running_mean.zero();
|
||||
|
||||
running_var = CUDANet::Tensor({in_shape[2]}, CUDANet::DType::FLOAT32, backend);
|
||||
running_var.fill(1);
|
||||
|
||||
weights = CUDANet::Tensor({in_shape[2]}, CUDANet::DType::FLOAT32, backend);
|
||||
weights.fill(1);
|
||||
|
||||
biases = CUDANet::Tensor({in_shape[2]}, CUDANet::DType::FLOAT32, backend);
|
||||
biases.zero();
|
||||
|
||||
output = CUDANet::Tensor(in_shape, CUDANet::DType::FLOAT32, backend);
|
||||
}
|
||||
|
||||
BatchNorm2d::~BatchNorm2d() {}
|
||||
|
||||
CUDANet::Tensor& BatchNorm2d::forward(CUDANet::Tensor& input) {
|
||||
output.zero();
|
||||
backend->batch_norm(
|
||||
input,
|
||||
output,
|
||||
in_shape,
|
||||
weights,
|
||||
biases,
|
||||
running_mean,
|
||||
running_var,
|
||||
epsilon
|
||||
);
|
||||
|
||||
weights.resize(inputChannels);
|
||||
biases.resize(inputChannels);
|
||||
|
||||
running_mean.resize(inputChannels);
|
||||
running_var.resize(inputChannels);
|
||||
|
||||
initializeWeights();
|
||||
initializeBiases();
|
||||
initializeRunningMean();
|
||||
initializeRunningVar();
|
||||
|
||||
#ifdef USE_CUDA
|
||||
initCUDA();
|
||||
toCuda();
|
||||
#endif
|
||||
return output;
|
||||
}
|
||||
|
||||
BatchNorm2d::~BatchNorm2d() {
|
||||
#ifdef USE_CUDA
|
||||
delCUDA();
|
||||
#endif
|
||||
CUDANet::Shape BatchNorm2d::input_shape() {
|
||||
return in_shape;
|
||||
}
|
||||
|
||||
void BatchNorm2d::initializeWeights() {
|
||||
std::fill(weights.begin(), weights.end(), 1.0f);
|
||||
CUDANet::Shape BatchNorm2d::output_shape() {
|
||||
return in_shape;
|
||||
}
|
||||
|
||||
void BatchNorm2d::initializeBiases() {
|
||||
std::fill(biases.begin(), biases.end(), 0.0f);
|
||||
size_t BatchNorm2d::input_size() {
|
||||
return sizeof(float) * in_shape[0] * in_shape[1] * in_shape[2];
|
||||
}
|
||||
|
||||
void BatchNorm2d::initializeRunningMean() {
|
||||
std::fill(running_mean.begin(), running_mean.end(), 0.0f);
|
||||
size_t BatchNorm2d::output_size() {
|
||||
return sizeof(float) * in_shape[0] * in_shape[1] * in_shape[2];
|
||||
}
|
||||
|
||||
void BatchNorm2d::initializeRunningVar() {
|
||||
std::fill(running_var.begin(), running_var.end(), 1.0f);
|
||||
void BatchNorm2d::set_weights(void* input) {
|
||||
weights.set_data<float>(static_cast<float*>(input));
|
||||
}
|
||||
|
||||
void BatchNorm2d::setWeights(const float* weights_input) {
|
||||
std::copy(weights_input, weights_input + weights.size(), weights.begin());
|
||||
#ifdef USE_CUDA
|
||||
toCuda();
|
||||
#endif
|
||||
}
|
||||
|
||||
std::vector<float> BatchNorm2d::getWeights() {
|
||||
CUDANet::Tensor& BatchNorm2d::get_weights() {
|
||||
return weights;
|
||||
}
|
||||
|
||||
void BatchNorm2d::setBiases(const float* biases_input) {
|
||||
std::copy(biases_input, biases_input + biases.size(), biases.begin());
|
||||
#ifdef USE_CUDA
|
||||
toCuda();
|
||||
#endif
|
||||
void BatchNorm2d::set_biases(void* input) {
|
||||
biases.set_data<float>(static_cast<float*>(input));
|
||||
}
|
||||
|
||||
std::vector<float> BatchNorm2d::getBiases() {
|
||||
CUDANet::Tensor& BatchNorm2d::get_biases() {
|
||||
return biases;
|
||||
}
|
||||
|
||||
void BatchNorm2d::setRunningMean(const float* running_mean_input) {
|
||||
std::copy(
|
||||
running_mean_input, running_mean_input + inputChannels,
|
||||
running_mean.begin()
|
||||
);
|
||||
#ifdef USE_CUDA
|
||||
toCuda();
|
||||
#endif
|
||||
void BatchNorm2d::set_running_mean(void* input) {
|
||||
running_mean.set_data<float>(static_cast<float*>(input));
|
||||
}
|
||||
|
||||
std::vector<float> BatchNorm2d::getRunningMean() {
|
||||
CUDANet::Tensor& BatchNorm2d::get_running_mean() {
|
||||
return running_mean;
|
||||
}
|
||||
|
||||
void BatchNorm2d::setRunningVar(const float* running_var_input) {
|
||||
std::copy(
|
||||
running_var_input, running_var_input + inputChannels,
|
||||
running_var.begin()
|
||||
);
|
||||
#ifdef USE_CUDA
|
||||
toCuda();
|
||||
#endif
|
||||
void BatchNorm2d::set_running_var(void* input) {
|
||||
running_var.set_data<float>(static_cast<float*>(input));
|
||||
}
|
||||
|
||||
std::vector<float> BatchNorm2d::getRunningVar() {
|
||||
CUDANet::Tensor& BatchNorm2d::get_running_var() {
|
||||
return running_var;
|
||||
}
|
||||
|
||||
int BatchNorm2d::getInputSize() {
|
||||
return inputSize.first * inputSize.second * inputChannels;
|
||||
}
|
||||
|
||||
int BatchNorm2d::getOutputSize() {
|
||||
return inputSize.first * inputSize.second * inputChannels;
|
||||
}
|
||||
|
||||
shape2d BatchNorm2d::getOutputDims() {
|
||||
return inputSize;
|
||||
}
|
||||
|
||||
float* BatchNorm2d::forwardCPU(const float* input) {
|
||||
throw std::logic_error("Not implemented");
|
||||
}
|
||||
|
||||
float* BatchNorm2d::forward(const float* input) {
|
||||
#ifdef USE_CUDA
|
||||
return forwardCUDA(input);
|
||||
#else
|
||||
return forwardCPU(input);
|
||||
#endif
|
||||
}
|
||||
@@ -47,7 +47,7 @@ Conv2d::Conv2d(
|
||||
};
|
||||
|
||||
output = CUDANet::Tensor(
|
||||
Shape{out_shape[0] * out_shape[1] * out_shape[3]},
|
||||
Shape{out_shape[0], out_shape[1], out_shape[3]},
|
||||
CUDANet::DType::FLOAT32, backend
|
||||
);
|
||||
|
||||
|
||||
@@ -50,7 +50,7 @@ MaxPool2d::~MaxPool2d() {}
|
||||
|
||||
CUDANet::Tensor& MaxPool2d::forward(CUDANet::Tensor& input) {
|
||||
output.zero();
|
||||
backend->maxPool2d(
|
||||
backend->max_pool2d(
|
||||
input, output, in_shape, pool_shape, stride_shape, padding_shape,
|
||||
out_shape
|
||||
);
|
||||
|
||||
Reference in New Issue
Block a user