mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-12-23 14:54:28 +00:00
Migrate batch norm layer
This commit is contained in:
@@ -16,6 +16,7 @@ class Backend {
|
||||
// Tensor ops
|
||||
virtual void print(const CUDANet::Tensor& input) = 0;
|
||||
virtual void zero(CUDANet::Tensor& input) = 0;
|
||||
virtual void fill(CUDANet::Tensor& input, int data) = 0;
|
||||
|
||||
virtual void
|
||||
copy_to_device(CUDANet::Tensor& tensor, void* data, size_t size) = 0;
|
||||
@@ -53,7 +54,7 @@ class Backend {
|
||||
const CUDANet::Shape out_shape
|
||||
) = 0;
|
||||
|
||||
virtual CUDANet::Tensor& maxPool2d(
|
||||
virtual CUDANet::Tensor& max_pool2d(
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
CUDANet::Shape input_shape,
|
||||
@@ -63,7 +64,7 @@ class Backend {
|
||||
CUDANet::Shape output_shape
|
||||
) = 0;
|
||||
|
||||
virtual CUDANet::Tensor& avgPool2d(
|
||||
virtual CUDANet::Tensor& avg_pool2d(
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
CUDANet::Shape input_shape,
|
||||
@@ -72,6 +73,17 @@ class Backend {
|
||||
CUDANet::Shape padding_shape,
|
||||
CUDANet::Shape output_shape
|
||||
) = 0;
|
||||
|
||||
virtual CUDANet::Tensor& batch_norm(
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
CUDANet::Shape input_shape,
|
||||
CUDANet::Tensor& weights,
|
||||
CUDANet::Tensor& biases,
|
||||
CUDANet::Tensor& running_mean,
|
||||
CUDANet::Tensor& running_var,
|
||||
CUDANet::Tensor& epsilon
|
||||
) = 0;
|
||||
};
|
||||
|
||||
} // namespace CUDANet
|
||||
@@ -14,6 +14,7 @@ class CUDA : public Backend {
|
||||
// Tensor ops
|
||||
void print(const CUDANet::Tensor& input) override;
|
||||
void zero(CUDANet::Tensor& input) override;
|
||||
void fill(CUDANet::Tensor &input, int value) override;
|
||||
void
|
||||
copy_to_device(CUDANet::Tensor& tensor, void* data, size_t size) override;
|
||||
void sum(const CUDANet::Tensor& input, CUDANet::Tensor& sum) override;
|
||||
@@ -49,7 +50,7 @@ class CUDA : public Backend {
|
||||
const CUDANet::Shape out_shape
|
||||
) override;
|
||||
|
||||
CUDANet::Tensor& maxPool2d(
|
||||
CUDANet::Tensor& max_pool2d(
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
CUDANet::Shape input_shape,
|
||||
@@ -59,7 +60,7 @@ class CUDA : public Backend {
|
||||
CUDANet::Shape output_shape
|
||||
) override;
|
||||
|
||||
CUDANet::Tensor& avgPool2d(
|
||||
CUDANet::Tensor& avg_pool2d(
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
CUDANet::Shape input_shape,
|
||||
@@ -67,7 +68,18 @@ class CUDA : public Backend {
|
||||
CUDANet::Shape stride_shape,
|
||||
CUDANet::Shape padding_shape,
|
||||
CUDANet::Shape output_shape
|
||||
) = 0;
|
||||
) override;
|
||||
|
||||
CUDANet::Tensor& batch_norm(
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
CUDANet::Shape input_shape,
|
||||
CUDANet::Tensor& weights,
|
||||
CUDANet::Tensor& biases,
|
||||
CUDANet::Tensor& running_mean,
|
||||
CUDANet::Tensor& running_var,
|
||||
CUDANet::Tensor& epsilon
|
||||
) override;
|
||||
};
|
||||
|
||||
} // namespace CUDANet::Backend
|
||||
@@ -1,170 +1,54 @@
|
||||
#ifndef CUDANET_BATCH_NORM_H
|
||||
#define CUDANET_BATCH_NORM_H
|
||||
#pragma once
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "activation.hpp"
|
||||
#include "layer.hpp"
|
||||
|
||||
namespace CUDANet::Layers {
|
||||
|
||||
class BatchNorm2d : public WeightedLayer, public TwoDLayer {
|
||||
class BatchNorm2d : public Layer {
|
||||
public:
|
||||
BatchNorm2d(
|
||||
shape2d inputSize,
|
||||
int inputChannels,
|
||||
float epsilon,
|
||||
ActivationType activationType
|
||||
);
|
||||
BatchNorm2d(CUDANet::Shape input_shape, float epsilon, CUDANet::Backend *backend);
|
||||
|
||||
~BatchNorm2d();
|
||||
|
||||
/**
|
||||
* @brief Compute the forward pass of the batchnorm layer
|
||||
*
|
||||
* @param d_input Device pointer to the input
|
||||
* @return float* Device pointer to the output
|
||||
*/
|
||||
float* forward(const float* d_input);
|
||||
CUDANet::Tensor& forward(CUDANet::Tensor& input) override;
|
||||
|
||||
/**
|
||||
* @brief Set the weights of the batchnorm layer
|
||||
*
|
||||
* @param weights_input Pointer to the weights
|
||||
*/
|
||||
void setWeights(const float* weights_input);
|
||||
CUDANet::Shape input_shape() override;
|
||||
|
||||
/**
|
||||
* @brief Get the weights of the batchnorm layer
|
||||
*
|
||||
* @return std::vector<float>
|
||||
*/
|
||||
std::vector<float> getWeights();
|
||||
CUDANet::Shape output_shape() override;
|
||||
|
||||
/**
|
||||
* @brief Set the biases of the batchnorm layer
|
||||
*
|
||||
* @param biases_input Pointer to the biases
|
||||
*/
|
||||
void setBiases(const float* biases_input);
|
||||
size_t input_size() override;
|
||||
|
||||
/**
|
||||
* @brief Get the biases of the batchnorm layer
|
||||
*
|
||||
* @return std::vector<float>
|
||||
*/
|
||||
std::vector<float> getBiases();
|
||||
size_t output_size() override;
|
||||
|
||||
/**
|
||||
* @brief Set the Running Mean
|
||||
*
|
||||
* @param running_mean_input
|
||||
*/
|
||||
void setRunningMean(const float* running_mean_input);
|
||||
void set_weights(void* input) override;
|
||||
|
||||
/**
|
||||
* @brief Get the Running Mean
|
||||
*
|
||||
*/
|
||||
std::vector<float> getRunningMean();
|
||||
CUDANet::Tensor& get_weights() override;
|
||||
|
||||
/**
|
||||
* @brief Set the Running Var
|
||||
*
|
||||
* @param running_mean_input
|
||||
*/
|
||||
void setRunningVar(const float* running_mean_input);
|
||||
void set_biases(void* input) override;
|
||||
|
||||
/**
|
||||
* @brief Get the Running Var
|
||||
*
|
||||
*/
|
||||
std::vector<float> getRunningVar();
|
||||
CUDANet::Tensor& get_biases() override;
|
||||
|
||||
/**
|
||||
* @brief Get output size
|
||||
*
|
||||
* @return int output size
|
||||
*/
|
||||
int getOutputSize();
|
||||
void set_running_mean(void* input);
|
||||
|
||||
/**
|
||||
* @brief Get input size
|
||||
*
|
||||
* @return int input size
|
||||
*/
|
||||
int getInputSize();
|
||||
CUDANet::Tensor& get_running_mean();
|
||||
|
||||
shape2d getOutputDims();
|
||||
void set_running_var(void* input);
|
||||
|
||||
CUDANet::Tensor& get_running_var();
|
||||
|
||||
private:
|
||||
shape2d inputSize;
|
||||
int inputChannels;
|
||||
float epsilon;
|
||||
CUDANet::Shape in_shape;
|
||||
CUDANet::Tensor epsilon;
|
||||
|
||||
int gridSize;
|
||||
CUDANet::Tensor running_mean;
|
||||
CUDANet::Tensor running_var;
|
||||
|
||||
#ifdef USE_CUDA
|
||||
CUDANet::Tensor weights;
|
||||
CUDANet::Tensor biases;
|
||||
|
||||
float* d_output;
|
||||
CUDANet::Tensor output;
|
||||
|
||||
float* d_running_mean;
|
||||
float* d_running_var;
|
||||
|
||||
float* d_length;
|
||||
float* d_epsilon;
|
||||
|
||||
float* d_weights;
|
||||
float* d_biases;
|
||||
|
||||
void initCUDA();
|
||||
void delCUDA();
|
||||
|
||||
/**
|
||||
* @brief Copy weights and biases to the device
|
||||
*
|
||||
*/
|
||||
void toCuda();
|
||||
|
||||
float* forwardCUDA(const float* d_input);
|
||||
|
||||
#endif
|
||||
|
||||
std::vector<float> weights;
|
||||
std::vector<float> biases;
|
||||
|
||||
std::vector<float> running_mean;
|
||||
std::vector<float> running_var;
|
||||
|
||||
Activation* activation;
|
||||
|
||||
float* forwardCPU(const float* input);
|
||||
|
||||
/**
|
||||
* @brief Initialize weights of the batchnorm layer with zeros
|
||||
*
|
||||
*/
|
||||
void initializeWeights();
|
||||
|
||||
/**
|
||||
* @brief Initialize biases of the batchnorm layer with zeros
|
||||
*
|
||||
*/
|
||||
void initializeBiases();
|
||||
|
||||
/**
|
||||
* @brief Initialize mean of the batchnorm layer with zeros
|
||||
*
|
||||
*/
|
||||
void initializeRunningMean();
|
||||
|
||||
/**
|
||||
* @brief Initialize sqrt of variance of the batchnorm layer with ones
|
||||
*
|
||||
*/
|
||||
void initializeRunningVar();
|
||||
CUDANet::Backend *backend;
|
||||
};
|
||||
|
||||
} // namespace CUDANet::Layers
|
||||
|
||||
#endif // CUDANET_BATCH_NORM_H
|
||||
@@ -45,6 +45,11 @@ public:
|
||||
|
||||
void zero();
|
||||
|
||||
template <typename T>
|
||||
void fill(T value) {
|
||||
backend->fill(*this, value);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void set_data(T *data) {
|
||||
backend->copy_to_device(*this, data, total_size);
|
||||
|
||||
Reference in New Issue
Block a user