Make conv2d work again

This commit is contained in:
2024-03-10 19:13:22 +01:00
parent 6bbc036f62
commit f3112311da
6 changed files with 146 additions and 98 deletions

View File

@@ -1,4 +1,5 @@
#include "convolution.cuh"
#include <iostream>
__global__ void convolution_kernel(
const float* d_input,
@@ -19,35 +20,26 @@ __global__ void convolution_kernel(
// Get output index
int f = tid / (outputSize * outputSize);
int i = (tid % (outputSize * outputSize)) / outputSize;
int j = (tid % (outputSize * outputSize)) % outputSize;
int i = tid % (outputSize * outputSize) / outputSize;
int j = tid % outputSize;
float sum = 0.0f;
// std::cout << "f: " << f << ", i: " << i << ", j: " << j << std::endl;
// Iterate over kernel and input matrix
for (int k = 0; k < kernelSize; k++) {
for (int l = 0; l < kernelSize; l++) {
for (int c = 0; c < nChannels; c++) {
int kernelIndex =
k * (kernelSize * nChannels * nFilters) +
l * (nChannels * nFilters) + c * (nFilters) + f;
int inputIndex =
(i * stride + k) * (inputSize * nChannels) +
(j * stride + l) * (nChannels) + c;
// std::cout << "kernelIndex: " << kernelIndex << ", kernel
// value: " << kernels[kernelIndex] << ", inputIndex: " <<
// inputIndex << ", input value: " << input[inputIndex] <<
// std::endl;
int kernelIndex = f * kernelSize * kernelSize * nChannels +
c * kernelSize * kernelSize + k * kernelSize +
l;
int inputIndex = c * inputSize * inputSize +
(i * stride + k) * inputSize +
(j * stride + l);
sum += d_kernel[kernelIndex] * d_input[inputIndex];
}
}
}
// std::cout << "sum: " << sum << std::endl;
d_output[i * (outputSize * nFilters) + j * (nFilters) + f] = sum;
d_output[tid] = sum;
}

View File

@@ -1,5 +1,5 @@
#include <string>
#include <iostream>
#include <string>
#include "activations.cuh"
#include "conv2d.cuh"
@@ -13,7 +13,7 @@ Layers::Conv2d::Conv2d(
int inputChannels,
int kernelSize,
int stride,
std::string padding,
Padding padding,
int numFilters,
Activation activation
)
@@ -25,34 +25,43 @@ Layers::Conv2d::Conv2d(
activation(activation) {
// Allocate memory for kernels
if (padding == "SAME") {
switch (padding)
{
case SAME:
outputSize = inputSize;
paddingSize = ((stride - 1) * inputSize - stride + kernelSize) / 2;
} else if (padding == "VALID") {
break;
case VALID:
paddingSize = 0;
outputSize = (inputSize - kernelSize) / stride + 1;
break;
default:
break;
}
kernels.resize(kernelSize * kernelSize * inputChannels * numFilters);
initializeKernels();
initializeKernels();
d_kernels = nullptr;
CUDA_CHECK(
cudaMalloc((void**)&d_kernels, sizeof(float) * kernelSize * kernelSize * inputChannels * numFilters)
);
CUDA_CHECK(cudaMalloc(
(void**)&d_kernels,
sizeof(float) * kernelSize * kernelSize * inputChannels * numFilters
));
biases.resize(outputSize * outputSize * numFilters);
initializeBiases();
d_biases = nullptr;
CUDA_CHECK(
cudaMalloc((void**)&d_biases, sizeof(float) * outputSize * outputSize * numFilters)
);
CUDA_CHECK(cudaMalloc(
(void**)&d_biases, sizeof(float) * outputSize * outputSize * numFilters
));
d_padded = nullptr;
CUDA_CHECK(cudaMalloc(
(void**)&d_padded, sizeof(float) * (inputSize + 2 * paddingSize) *
(inputSize + 2 * paddingSize) * inputChannels
(inputSize + 2 * paddingSize) * inputChannels
));
toCuda();
@@ -79,19 +88,22 @@ void Layers::Conv2d::setKernels(const std::vector<float>& kernels_input) {
void Layers::Conv2d::toCuda() {
CUDA_CHECK(cudaMemcpy(
d_kernels, kernels.data(), sizeof(float) * kernelSize * kernelSize * numFilters,
d_kernels, kernels.data(),
sizeof(float) * kernelSize * kernelSize * inputChannels * numFilters,
cudaMemcpyHostToDevice
));
CUDA_CHECK(cudaMemcpy(
d_biases, biases.data(), sizeof(float) * outputSize * outputSize * numFilters,
d_biases, biases.data(),
sizeof(float) * outputSize * outputSize * numFilters,
cudaMemcpyHostToDevice
));
}
void Layers::Conv2d::forward(const float* d_input, float* d_output) {
// Pad input
int THREADS_PER_BLOCK = (inputSize + 2 * paddingSize) * (inputSize + 2 * paddingSize) * inputChannels;
int THREADS_PER_BLOCK = (inputSize + 2 * paddingSize) *
(inputSize + 2 * paddingSize) * inputChannels;
pad_matrix_kernel<<<1, THREADS_PER_BLOCK>>>(
d_input, d_padded, inputSize, inputSize, inputChannels, paddingSize
@@ -100,11 +112,14 @@ void Layers::Conv2d::forward(const float* d_input, float* d_output) {
// Convolve
THREADS_PER_BLOCK = outputSize * outputSize * numFilters;
convolution_kernel<<<1, THREADS_PER_BLOCK>>>(
d_padded, d_kernels, d_output, inputSize + (2 * paddingSize), inputChannels, kernelSize, stride, numFilters, outputSize
d_padded, d_kernels, d_output, inputSize + (2 * paddingSize),
inputChannels, kernelSize, stride, numFilters, outputSize
);
// Add bias
vec_vec_add_kernel<<<1, biases.size()>>>(d_biases, d_output, d_output, biases.size());
vec_vec_add_kernel<<<1, biases.size()>>>(
d_biases, d_output, d_output, biases.size()
);
CUDA_CHECK(cudaDeviceSynchronize());
}
@@ -119,27 +134,35 @@ outputSize x numFilters
*/
void Layers::Conv2d::host_conv(const float* input, float* output) {
// Iterate over output matrix
for (int f = 0; f < numFilters; f++) {
for (int i = 0; i < outputSize; i++) {
for (int j = 0; j < outputSize; j++) {
float sum = 0.0f;
for (int tid = 0; tid < outputSize * outputSize * numFilters; tid++)
{
// Get output index
int f = tid / (outputSize * outputSize);
int i = tid % (outputSize * outputSize) / outputSize;
int j = tid % outputSize;
// Iterate over kernel and input matrix
for (int k = 0; k < kernelSize; k++) {
for (int l = 0; l < kernelSize; l++) {
for (int c = 0; c < inputChannels; c++) {
int kernelIndex = k * (kernelSize * inputChannels * numFilters) + l * (inputChannels * numFilters) + c * (numFilters) + f;
int inputIndex = (i * stride + k) * (inputSize * inputChannels) + (j * stride + l) * (inputChannels) + c;
float sum = 0.0f;
sum += kernels[kernelIndex] * input[inputIndex];
}
}
// Iterate over kernel and input matrix
for (int k = 0; k < kernelSize; k++) {
for (int l = 0; l < kernelSize; l++) {
for (int c = 0; c < inputChannels; c++) {
int kernelIndex =
f * kernelSize * kernelSize * inputChannels +
c * kernelSize * kernelSize + k * kernelSize +
l;
int inputIndex = c * inputSize * inputSize +
(i * stride + k) * inputSize +
(j * stride + l);
sum += kernels[kernelIndex] * input[inputIndex];
}
output[i * (outputSize * numFilters) + j * (numFilters) + f] = sum;
}
}
int outputIndex =
f * outputSize * outputSize + i * outputSize + j;
output[outputIndex] = sum;
}
}