mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-05 17:34:21 +00:00
Make conv2d work again
This commit is contained in:
4
.gitignore
vendored
4
.gitignore
vendored
@@ -33,4 +33,6 @@
|
||||
|
||||
build/
|
||||
.vscode/
|
||||
.cache
|
||||
.cache
|
||||
|
||||
venv
|
||||
@@ -10,4 +10,9 @@ __global__ void pad_matrix_kernel(
|
||||
int p
|
||||
);
|
||||
|
||||
enum Padding {
|
||||
SAME,
|
||||
VALID
|
||||
};
|
||||
|
||||
#endif // PADDING_H
|
||||
@@ -5,19 +5,20 @@
|
||||
#include <vector>
|
||||
|
||||
#include "activations.cuh"
|
||||
#include "padding.cuh"
|
||||
|
||||
namespace Layers {
|
||||
|
||||
class Conv2d {
|
||||
public:
|
||||
Conv2d(
|
||||
int inputSize,
|
||||
int inputChannels,
|
||||
int kernelSize,
|
||||
int stride,
|
||||
std::string padding,
|
||||
int numFilters,
|
||||
Activation activation
|
||||
int inputSize,
|
||||
int inputChannels,
|
||||
int kernelSize,
|
||||
int stride,
|
||||
Padding padding,
|
||||
int numFilters,
|
||||
Activation activation
|
||||
);
|
||||
~Conv2d();
|
||||
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
#include "convolution.cuh"
|
||||
#include <iostream>
|
||||
|
||||
__global__ void convolution_kernel(
|
||||
const float* d_input,
|
||||
@@ -19,35 +20,26 @@ __global__ void convolution_kernel(
|
||||
|
||||
// Get output index
|
||||
int f = tid / (outputSize * outputSize);
|
||||
int i = (tid % (outputSize * outputSize)) / outputSize;
|
||||
int j = (tid % (outputSize * outputSize)) % outputSize;
|
||||
int i = tid % (outputSize * outputSize) / outputSize;
|
||||
int j = tid % outputSize;
|
||||
|
||||
float sum = 0.0f;
|
||||
|
||||
// std::cout << "f: " << f << ", i: " << i << ", j: " << j << std::endl;
|
||||
|
||||
// Iterate over kernel and input matrix
|
||||
for (int k = 0; k < kernelSize; k++) {
|
||||
for (int l = 0; l < kernelSize; l++) {
|
||||
for (int c = 0; c < nChannels; c++) {
|
||||
int kernelIndex =
|
||||
k * (kernelSize * nChannels * nFilters) +
|
||||
l * (nChannels * nFilters) + c * (nFilters) + f;
|
||||
int inputIndex =
|
||||
(i * stride + k) * (inputSize * nChannels) +
|
||||
(j * stride + l) * (nChannels) + c;
|
||||
|
||||
// std::cout << "kernelIndex: " << kernelIndex << ", kernel
|
||||
// value: " << kernels[kernelIndex] << ", inputIndex: " <<
|
||||
// inputIndex << ", input value: " << input[inputIndex] <<
|
||||
// std::endl;
|
||||
int kernelIndex = f * kernelSize * kernelSize * nChannels +
|
||||
c * kernelSize * kernelSize + k * kernelSize +
|
||||
l;
|
||||
int inputIndex = c * inputSize * inputSize +
|
||||
(i * stride + k) * inputSize +
|
||||
(j * stride + l);
|
||||
|
||||
sum += d_kernel[kernelIndex] * d_input[inputIndex];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// std::cout << "sum: " << sum << std::endl;
|
||||
|
||||
d_output[i * (outputSize * nFilters) + j * (nFilters) + f] = sum;
|
||||
d_output[tid] = sum;
|
||||
}
|
||||
@@ -1,5 +1,5 @@
|
||||
#include <string>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
|
||||
#include "activations.cuh"
|
||||
#include "conv2d.cuh"
|
||||
@@ -13,7 +13,7 @@ Layers::Conv2d::Conv2d(
|
||||
int inputChannels,
|
||||
int kernelSize,
|
||||
int stride,
|
||||
std::string padding,
|
||||
Padding padding,
|
||||
int numFilters,
|
||||
Activation activation
|
||||
)
|
||||
@@ -25,34 +25,43 @@ Layers::Conv2d::Conv2d(
|
||||
activation(activation) {
|
||||
// Allocate memory for kernels
|
||||
|
||||
if (padding == "SAME") {
|
||||
switch (padding)
|
||||
{
|
||||
case SAME:
|
||||
outputSize = inputSize;
|
||||
paddingSize = ((stride - 1) * inputSize - stride + kernelSize) / 2;
|
||||
} else if (padding == "VALID") {
|
||||
break;
|
||||
|
||||
case VALID:
|
||||
paddingSize = 0;
|
||||
outputSize = (inputSize - kernelSize) / stride + 1;
|
||||
break;
|
||||
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
kernels.resize(kernelSize * kernelSize * inputChannels * numFilters);
|
||||
initializeKernels();
|
||||
initializeKernels();
|
||||
|
||||
d_kernels = nullptr;
|
||||
CUDA_CHECK(
|
||||
cudaMalloc((void**)&d_kernels, sizeof(float) * kernelSize * kernelSize * inputChannels * numFilters)
|
||||
);
|
||||
CUDA_CHECK(cudaMalloc(
|
||||
(void**)&d_kernels,
|
||||
sizeof(float) * kernelSize * kernelSize * inputChannels * numFilters
|
||||
));
|
||||
|
||||
biases.resize(outputSize * outputSize * numFilters);
|
||||
initializeBiases();
|
||||
|
||||
d_biases = nullptr;
|
||||
CUDA_CHECK(
|
||||
cudaMalloc((void**)&d_biases, sizeof(float) * outputSize * outputSize * numFilters)
|
||||
);
|
||||
CUDA_CHECK(cudaMalloc(
|
||||
(void**)&d_biases, sizeof(float) * outputSize * outputSize * numFilters
|
||||
));
|
||||
|
||||
d_padded = nullptr;
|
||||
CUDA_CHECK(cudaMalloc(
|
||||
(void**)&d_padded, sizeof(float) * (inputSize + 2 * paddingSize) *
|
||||
(inputSize + 2 * paddingSize) * inputChannels
|
||||
(inputSize + 2 * paddingSize) * inputChannels
|
||||
));
|
||||
|
||||
toCuda();
|
||||
@@ -79,19 +88,22 @@ void Layers::Conv2d::setKernels(const std::vector<float>& kernels_input) {
|
||||
|
||||
void Layers::Conv2d::toCuda() {
|
||||
CUDA_CHECK(cudaMemcpy(
|
||||
d_kernels, kernels.data(), sizeof(float) * kernelSize * kernelSize * numFilters,
|
||||
d_kernels, kernels.data(),
|
||||
sizeof(float) * kernelSize * kernelSize * inputChannels * numFilters,
|
||||
cudaMemcpyHostToDevice
|
||||
));
|
||||
|
||||
CUDA_CHECK(cudaMemcpy(
|
||||
d_biases, biases.data(), sizeof(float) * outputSize * outputSize * numFilters,
|
||||
d_biases, biases.data(),
|
||||
sizeof(float) * outputSize * outputSize * numFilters,
|
||||
cudaMemcpyHostToDevice
|
||||
));
|
||||
}
|
||||
|
||||
void Layers::Conv2d::forward(const float* d_input, float* d_output) {
|
||||
// Pad input
|
||||
int THREADS_PER_BLOCK = (inputSize + 2 * paddingSize) * (inputSize + 2 * paddingSize) * inputChannels;
|
||||
int THREADS_PER_BLOCK = (inputSize + 2 * paddingSize) *
|
||||
(inputSize + 2 * paddingSize) * inputChannels;
|
||||
|
||||
pad_matrix_kernel<<<1, THREADS_PER_BLOCK>>>(
|
||||
d_input, d_padded, inputSize, inputSize, inputChannels, paddingSize
|
||||
@@ -100,11 +112,14 @@ void Layers::Conv2d::forward(const float* d_input, float* d_output) {
|
||||
// Convolve
|
||||
THREADS_PER_BLOCK = outputSize * outputSize * numFilters;
|
||||
convolution_kernel<<<1, THREADS_PER_BLOCK>>>(
|
||||
d_padded, d_kernels, d_output, inputSize + (2 * paddingSize), inputChannels, kernelSize, stride, numFilters, outputSize
|
||||
d_padded, d_kernels, d_output, inputSize + (2 * paddingSize),
|
||||
inputChannels, kernelSize, stride, numFilters, outputSize
|
||||
);
|
||||
|
||||
// Add bias
|
||||
vec_vec_add_kernel<<<1, biases.size()>>>(d_biases, d_output, d_output, biases.size());
|
||||
vec_vec_add_kernel<<<1, biases.size()>>>(
|
||||
d_biases, d_output, d_output, biases.size()
|
||||
);
|
||||
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
}
|
||||
@@ -119,27 +134,35 @@ outputSize x numFilters
|
||||
*/
|
||||
void Layers::Conv2d::host_conv(const float* input, float* output) {
|
||||
// Iterate over output matrix
|
||||
for (int f = 0; f < numFilters; f++) {
|
||||
for (int i = 0; i < outputSize; i++) {
|
||||
for (int j = 0; j < outputSize; j++) {
|
||||
|
||||
float sum = 0.0f;
|
||||
for (int tid = 0; tid < outputSize * outputSize * numFilters; tid++)
|
||||
{
|
||||
// Get output index
|
||||
int f = tid / (outputSize * outputSize);
|
||||
int i = tid % (outputSize * outputSize) / outputSize;
|
||||
int j = tid % outputSize;
|
||||
|
||||
// Iterate over kernel and input matrix
|
||||
for (int k = 0; k < kernelSize; k++) {
|
||||
for (int l = 0; l < kernelSize; l++) {
|
||||
for (int c = 0; c < inputChannels; c++) {
|
||||
|
||||
int kernelIndex = k * (kernelSize * inputChannels * numFilters) + l * (inputChannels * numFilters) + c * (numFilters) + f;
|
||||
int inputIndex = (i * stride + k) * (inputSize * inputChannels) + (j * stride + l) * (inputChannels) + c;
|
||||
float sum = 0.0f;
|
||||
|
||||
sum += kernels[kernelIndex] * input[inputIndex];
|
||||
}
|
||||
}
|
||||
// Iterate over kernel and input matrix
|
||||
for (int k = 0; k < kernelSize; k++) {
|
||||
for (int l = 0; l < kernelSize; l++) {
|
||||
for (int c = 0; c < inputChannels; c++) {
|
||||
int kernelIndex =
|
||||
f * kernelSize * kernelSize * inputChannels +
|
||||
c * kernelSize * kernelSize + k * kernelSize +
|
||||
l;
|
||||
int inputIndex = c * inputSize * inputSize +
|
||||
(i * stride + k) * inputSize +
|
||||
(j * stride + l);
|
||||
|
||||
sum += kernels[kernelIndex] * input[inputIndex];
|
||||
}
|
||||
|
||||
output[i * (outputSize * numFilters) + j * (numFilters) + f] = sum;
|
||||
}
|
||||
}
|
||||
|
||||
int outputIndex =
|
||||
f * outputSize * outputSize + i * outputSize + j;
|
||||
|
||||
output[outputIndex] = sum;
|
||||
}
|
||||
}
|
||||
@@ -12,7 +12,7 @@ class Conv2dTest : public ::testing::Test {
|
||||
int inputChannels,
|
||||
int kernelSize,
|
||||
int stride,
|
||||
std::string padding,
|
||||
Padding padding,
|
||||
int numFilters,
|
||||
Activation activation,
|
||||
std::vector<float>& input,
|
||||
@@ -30,12 +30,14 @@ class Conv2dTest : public ::testing::Test {
|
||||
|
||||
// Allocate device memory
|
||||
cudaStatus = cudaMalloc(
|
||||
(void**)&d_input, sizeof(float) * inputSize * inputSize * inputChannels
|
||||
(void**)&d_input,
|
||||
sizeof(float) * inputSize * inputSize * inputChannels
|
||||
);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
cudaStatus = cudaMalloc(
|
||||
(void**)&d_output, sizeof(float) * conv2d.outputSize * conv2d.outputSize * numFilters
|
||||
(void**)&d_output,
|
||||
sizeof(float) * conv2d.outputSize * conv2d.outputSize * numFilters
|
||||
);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
@@ -46,7 +48,6 @@ class Conv2dTest : public ::testing::Test {
|
||||
);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
|
||||
return conv2d;
|
||||
}
|
||||
|
||||
@@ -60,13 +61,13 @@ class Conv2dTest : public ::testing::Test {
|
||||
};
|
||||
|
||||
TEST_F(Conv2dTest, SimpleTest) {
|
||||
int inputSize = 4;
|
||||
int inputChannels = 1;
|
||||
int kernelSize = 2;
|
||||
int stride = 1;
|
||||
std::string padding = "VALID";
|
||||
int numFilters = 1;
|
||||
Activation activation = LINEAR;
|
||||
int inputSize = 4;
|
||||
int inputChannels = 1;
|
||||
int kernelSize = 2;
|
||||
int stride = 1;
|
||||
Padding padding = VALID;
|
||||
int numFilters = 1;
|
||||
Activation activation = LINEAR;
|
||||
|
||||
std::vector<float> input = {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f,
|
||||
7.0f, 8.0f, 9.0f, 10.0f, 11.0f, 12.0f,
|
||||
@@ -109,14 +110,15 @@ TEST_F(Conv2dTest, SimpleTest) {
|
||||
}
|
||||
|
||||
TEST_F(Conv2dTest, ComplexTest) {
|
||||
int inputSize = 5;
|
||||
int inputChannels = 3;
|
||||
int kernelSize = 3;
|
||||
int stride = 1;
|
||||
std::string padding = "SAME";
|
||||
int numFilters = 2;
|
||||
Activation activation = LINEAR;
|
||||
int inputSize = 5;
|
||||
int inputChannels = 3;
|
||||
int kernelSize = 3;
|
||||
int stride = 1;
|
||||
Padding padding = SAME;
|
||||
int numFilters = 2;
|
||||
Activation activation = LINEAR;
|
||||
|
||||
// clang-format off
|
||||
std::vector<float> input = {
|
||||
// Channel 1
|
||||
0.823f, 0.217f, 0.435f, 0.981f, 0.742f,
|
||||
@@ -139,33 +141,32 @@ TEST_F(Conv2dTest, ComplexTest) {
|
||||
};
|
||||
|
||||
std::vector<float> kernels = {
|
||||
// Filter 1 Channel 1
|
||||
// Filter 1, Channel 1
|
||||
0.128f, 0.754f, 0.987f,
|
||||
0.321f, 0.412f, 0.635f,
|
||||
0.298f, 0.017f, 0.845f,
|
||||
// Filter 1 Channel 2
|
||||
// Filter 1, Channel 2
|
||||
0.514f, 0.729f, 0.952f,
|
||||
0.684f, 0.378f, 0.159f,
|
||||
0.823f, 0.547f, 0.216f,
|
||||
// Filter 1 Channel 3
|
||||
0.456f, 0.123f, 0.789f,
|
||||
0.123f, 0.345f, 0.123f,
|
||||
0.789f, 0.123f, 0.345f,
|
||||
// Filter 2 Channel 1
|
||||
0.123f, 0.345f, 0.123f,
|
||||
0.789f, 0.123f, 0.345f,
|
||||
0.123f, 0.345f, 0.123f,
|
||||
// Filter 2 Channel 2
|
||||
0.146f, 0.789f, 0.123f,
|
||||
0.345f, 0.123f, 0.789f,
|
||||
0.123f, 0.345f, 0.123f,
|
||||
// Filter 2 Channel 3
|
||||
0.123f, 0.345f, 0.123f,
|
||||
0.789f, 0.123f, 0.345f,
|
||||
0.123f, 0.345f, 0.123f
|
||||
|
||||
|
||||
// Filter 1, Channel 3
|
||||
0.983f, 0.231f, 0.456f,
|
||||
0.178f, 0.654f, 0.821f,
|
||||
0.345f, 0.987f, 0.123f,
|
||||
// Filter 2, Channel 1
|
||||
0.789f, 0.543f, 0.210f,
|
||||
0.012f, 0.371f, 0.638f,
|
||||
0.456f, 0.198f, 0.907f,
|
||||
// Filter 2, Channel 2
|
||||
0.101f, 0.432f, 0.759f,
|
||||
0.234f, 0.567f, 0.890f,
|
||||
0.543f, 0.876f, 0.219f,
|
||||
// Filter 2, Channel 3
|
||||
0.345f, 0.678f, 0.011f,
|
||||
0.678f, 0.011f, 0.345f,
|
||||
0.011f, 0.345f, 0.678f
|
||||
};
|
||||
// clang-format on
|
||||
|
||||
float* d_input;
|
||||
float* d_output;
|
||||
@@ -178,4 +179,28 @@ TEST_F(Conv2dTest, ComplexTest) {
|
||||
EXPECT_EQ(inputSize, conv2d.outputSize);
|
||||
|
||||
conv2d.forward(d_input, d_output);
|
||||
|
||||
std::vector<float> output(
|
||||
conv2d.outputSize * conv2d.outputSize * numFilters
|
||||
);
|
||||
cudaMemcpy(
|
||||
output.data(), d_output,
|
||||
sizeof(float) * conv2d.outputSize * conv2d.outputSize * numFilters,
|
||||
cudaMemcpyDeviceToHost
|
||||
);
|
||||
|
||||
// Generated by tools/generate_conv2d_test.py
|
||||
std::vector<float> expected = {
|
||||
2.29426f, 3.89173f, 4.17634f, 3.25501f, 2.07618f, 5.41483f, 7.09971f,
|
||||
6.39811f, 5.71432f, 3.10928f, 5.12973f, 6.29638f, 5.26962f, 5.21997f,
|
||||
3.05852f, 6.17517f, 7.19311f, 6.69771f, 6.2142f, 4.03242f, 3.3792f,
|
||||
4.36444f, 4.396f, 4.69905f, 3.62061f, 2.87914f, 3.71743f, 3.51854f,
|
||||
2.98413f, 1.46579f, 4.94951f, 6.18983f, 4.98187f, 4.38372f, 3.35386f,
|
||||
5.0364f, 5.3756f, 4.05993f, 4.89299f, 2.78625f, 5.33763f, 5.80899f,
|
||||
5.89785f, 5.51095f, 3.74287f, 2.64053f, 4.05895f, 3.96482f, 4.30177f,
|
||||
1.94269f
|
||||
};
|
||||
for (int i = 0; i < output.size(); i++) {
|
||||
EXPECT_NEAR(output[i], expected[i], 0.0001f);
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user