Cleanup and refactor

This commit is contained in:
2024-03-11 20:39:44 +01:00
parent f3112311da
commit e0178e2d5c
7 changed files with 108 additions and 108 deletions

View File

@@ -6,10 +6,11 @@
#include "activations.cuh"
#include "padding.cuh"
#include "ilayer.cuh"
namespace Layers {
class Conv2d {
class Conv2d : public ILayer {
public:
Conv2d(
int inputSize,
@@ -26,8 +27,8 @@ class Conv2d {
int outputSize;
void forward(const float* d_input, float* d_output);
void setKernels(const std::vector<float>& kernels_input);
void setWeights(const float* weights_input);
void setBiases(const float* biases_input);
void host_conv(const float* input, float* output);
private:
@@ -42,18 +43,18 @@ class Conv2d {
int numFilters;
// Kernels
std::vector<float> kernels;
std::vector<float> weights;
std::vector<float> biases;
// Cuda
float* d_kernels;
float* d_weights;
float* d_biases;
float* d_padded;
// Kernels
Activation activation;
void initializeKernels();
void initializeWeights();
void initializeBiases();
void toCuda();
};

View File

@@ -19,8 +19,8 @@ class Dense : public ILayer {
~Dense();
void forward(const float* d_input, float* d_output);
void setWeights(const std::vector<std::vector<float>>& weights);
void setBiases(const std::vector<float>& biases);
void setWeights(const float* weights);
void setBiases(const float* biases);
private:
int inputSize;

View File

@@ -11,8 +11,25 @@ class ILayer {
virtual ~ILayer() {}
virtual void forward(const float* input, float* output) = 0;
virtual void setWeights(const std::vector<std::vector<float>>& weights) = 0;
virtual void setBiases(const std::vector<float>& biases) = 0;
virtual void setWeights(const float* weights) = 0;
virtual void setBiases(const float* biases) = 0;
private:
virtual void initializeWeights() = 0;
virtual void initializeBiases() = 0;
virtual void toCuda() = 0;
int inputSize;
int outputSize;
float* d_weights;
float* d_biases;
std::vector<float> weights;
std::vector<float> biases;
Activation activation;
};
} // namespace Layers

View File

@@ -23,7 +23,6 @@ Layers::Conv2d::Conv2d(
stride(stride),
numFilters(numFilters),
activation(activation) {
// Allocate memory for kernels
switch (padding)
{
@@ -41,12 +40,12 @@ Layers::Conv2d::Conv2d(
break;
}
kernels.resize(kernelSize * kernelSize * inputChannels * numFilters);
initializeKernels();
weights.resize(kernelSize * kernelSize * inputChannels * numFilters);
initializeWeights();
d_kernels = nullptr;
d_weights = nullptr;
CUDA_CHECK(cudaMalloc(
(void**)&d_kernels,
(void**)&d_weights,
sizeof(float) * kernelSize * kernelSize * inputChannels * numFilters
));
@@ -68,27 +67,32 @@ Layers::Conv2d::Conv2d(
}
Layers::Conv2d::~Conv2d() {
cudaFree(d_kernels);
cudaFree(d_weights);
cudaFree(d_biases);
cudaFree(d_padded);
}
void Layers::Conv2d::initializeKernels() {
std::fill(kernels.begin(), kernels.end(), 0.0f);
void Layers::Conv2d::initializeWeights() {
std::fill(weights.begin(), weights.end(), 0.0f);
}
void Layers::Conv2d::initializeBiases() {
std::fill(biases.begin(), biases.end(), 0.0f);
}
void Layers::Conv2d::setKernels(const std::vector<float>& kernels_input) {
std::copy(kernels_input.begin(), kernels_input.end(), kernels.begin());
void Layers::Conv2d::setWeights(const float* weights_input) {
std::copy(weights_input, weights_input + weights.size(), weights.begin());
toCuda();
}
void Layers::Conv2d::setBiases(const float* biases_input) {
std::copy(biases_input, biases_input + biases.size(), biases.begin());
toCuda();
}
void Layers::Conv2d::toCuda() {
CUDA_CHECK(cudaMemcpy(
d_kernels, kernels.data(),
d_weights, weights.data(),
sizeof(float) * kernelSize * kernelSize * inputChannels * numFilters,
cudaMemcpyHostToDevice
));
@@ -112,7 +116,7 @@ void Layers::Conv2d::forward(const float* d_input, float* d_output) {
// Convolve
THREADS_PER_BLOCK = outputSize * outputSize * numFilters;
convolution_kernel<<<1, THREADS_PER_BLOCK>>>(
d_padded, d_kernels, d_output, inputSize + (2 * paddingSize),
d_padded, d_weights, d_output, inputSize + (2 * paddingSize),
inputChannels, kernelSize, stride, numFilters, outputSize
);
@@ -155,7 +159,7 @@ void Layers::Conv2d::host_conv(const float* input, float* output) {
(i * stride + k) * inputSize +
(j * stride + l);
sum += kernels[kernelIndex] * input[inputIndex];
sum += weights[kernelIndex] * input[inputIndex];
}
}
}

View File

@@ -10,14 +10,8 @@
#include "dense.cuh"
#include "matrix_math.cuh"
Layers::Dense::Dense(
int inputSize,
int outputSize,
Activation activation
)
: inputSize(inputSize),
outputSize(outputSize),
activation(activation) {
Layers::Dense::Dense(int inputSize, int outputSize, Activation activation)
: inputSize(inputSize), outputSize(outputSize), activation(activation) {
// Allocate memory for weights and biases
weights.resize(outputSize * inputSize);
biases.resize(outputSize);
@@ -52,7 +46,6 @@ void Layers::Dense::initializeBiases() {
}
void Layers::Dense::forward(const float* d_input, float* d_output) {
mat_vec_mul_kernel<<<1, outputSize>>>(
d_weights, d_input, d_output, inputSize, outputSize
);
@@ -63,15 +56,11 @@ void Layers::Dense::forward(const float* d_input, float* d_output) {
switch (activation) {
case SIGMOID:
sigmoid_kernel<<<1, outputSize>>>(
d_output, d_output, outputSize
);
sigmoid_kernel<<<1, outputSize>>>(d_output, d_output, outputSize);
break;
case RELU:
relu_kernel<<<1, outputSize>>>(
d_output, d_output, outputSize
);
relu_kernel<<<1, outputSize>>>(d_output, d_output, outputSize);
break;
default:
@@ -92,26 +81,12 @@ void Layers::Dense::toCuda() {
));
}
void Layers::Dense::setWeights(
const std::vector<std::vector<float>>& weights_input
) {
int numWeights = inputSize * outputSize;
if (weights.size() != numWeights) {
std::cerr << "Invalid number of weights" << std::endl;
exit(EXIT_FAILURE);
}
for (int i = 0; i < outputSize; ++i) {
for (int j = 0; j < inputSize; ++j) {
weights[i * inputSize + j] = weights_input[i][j];
}
}
void Layers::Dense::setWeights(const float* weights_input) {
std::copy(weights_input, weights_input + weights.size(), weights.begin());
toCuda();
}
void Layers::Dense::setBiases(const std::vector<float>& biases_input) {
std::copy(biases_input.begin(), biases_input.end(), biases.begin());
void Layers::Dense::setBiases(const float* biases_input) {
std::copy(biases_input, biases_input + biases.size(), biases.begin());
toCuda();
}

View File

@@ -16,7 +16,7 @@ class Conv2dTest : public ::testing::Test {
int numFilters,
Activation activation,
std::vector<float>& input,
std::vector<float>& kernels,
float* kernels,
float*& d_input,
float*& d_output
) {
@@ -26,7 +26,7 @@ class Conv2dTest : public ::testing::Test {
activation
);
conv2d.setKernels(kernels);
conv2d.setWeights(kernels);
// Allocate device memory
cudaStatus = cudaMalloc(
@@ -84,7 +84,7 @@ TEST_F(Conv2dTest, SimpleTest) {
Layers::Conv2d conv2d = commonTestSetup(
inputSize, inputChannels, kernelSize, stride, padding, numFilters,
activation, input, kernels, d_input, d_output
activation, input, kernels.data(), d_input, d_output
);
int outputSize = (inputSize - kernelSize) / stride + 1;
@@ -173,7 +173,7 @@ TEST_F(Conv2dTest, ComplexTest) {
Layers::Conv2d conv2d = commonTestSetup(
inputSize, inputChannels, kernelSize, stride, padding, numFilters,
activation, input, kernels, d_input, d_output
activation, input, kernels.data(), d_input, d_output
);
EXPECT_EQ(inputSize, conv2d.outputSize);

View File

@@ -6,23 +6,20 @@
#include "activations.cuh"
#include "dense.cuh"
class DenseLayerTest : public::testing::Test {
class DenseLayerTest : public ::testing::Test {
protected:
Layers::Dense commonTestSetup(
int inputSize,
int outputSize,
std::vector<float>& input,
std::vector<std::vector<float>>& weights,
std::vector<float>& biases,
float* weights,
float* biases,
float*& d_input,
float*& d_output,
Activation activation
) {
// Create Dense layer
Layers::Dense denseLayer(
inputSize, outputSize, activation
);
Layers::Dense denseLayer(inputSize, outputSize, activation);
// Set weights and biases
denseLayer.setWeights(weights);
@@ -37,11 +34,11 @@ class DenseLayerTest : public::testing::Test {
// Copy input to device
cudaStatus = cudaMemcpy(
d_input, input.data(), sizeof(float) * input.size(), cudaMemcpyHostToDevice
d_input, input.data(), sizeof(float) * input.size(),
cudaMemcpyHostToDevice
);
EXPECT_EQ(cudaStatus, cudaSuccess);
return denseLayer;
}
@@ -60,9 +57,7 @@ TEST_F(DenseLayerTest, Init) {
int inputSize = i;
int outputSize = j;
Layers::Dense denseLayer(
inputSize, outputSize, SIGMOID
);
Layers::Dense denseLayer(inputSize, outputSize, SIGMOID);
}
}
}
@@ -71,17 +66,19 @@ TEST_F(DenseLayerTest, setWeights) {
int inputSize = 4;
int outputSize = 5;
std::vector<std::vector<float>> weights = {
{0.5f, 1.0f, 0.2f, 0.8f},
{1.2f, 0.3f, 1.5f, 0.4f},
{0.7f, 1.8f, 0.9f, 0.1f},
{0.4f, 2.0f, 0.6f, 1.1f},
{1.3f, 0.5f, 0.0f, 1.7f}
// clang-format off
std::vector<float> weights = {
0.5f, 1.0f, 0.2f, 0.8f,
1.2f, 0.3f, 1.5f, 0.4f,
0.7f, 1.8f, 0.9f, 0.1f,
0.4f, 2.0f, 0.6f, 1.1f,
1.3f, 0.5f, 0.0f, 1.7f
};
// clang-format on
Layers::Dense denseLayer(inputSize, outputSize, SIGMOID);
denseLayer.setWeights(weights);
denseLayer.setWeights(weights.data());
}
TEST_F(DenseLayerTest, ForwardUnitWeightMatrixLinear) {
@@ -90,13 +87,11 @@ TEST_F(DenseLayerTest, ForwardUnitWeightMatrixLinear) {
std::vector<float> input = {1.0f, 2.0f, 3.0f};
std::vector<std::vector<float>> weights(
inputSize, std::vector<float>(outputSize, 0.0f)
);
std::vector<float> weights(outputSize * inputSize, 0.0f);
for (int i = 0; i < inputSize; ++i) {
for (int j = 0; j < outputSize; ++j) {
if (i == j) {
weights[i][j] = 1.0f;
weights[i * outputSize + j] = 1.0f;
}
}
}
@@ -106,13 +101,15 @@ TEST_F(DenseLayerTest, ForwardUnitWeightMatrixLinear) {
float* d_output;
Layers::Dense denseLayer = commonTestSetup(
inputSize, outputSize, input, weights, biases, d_input, d_output, LINEAR
inputSize, outputSize, input, weights.data(), biases.data(), d_input,
d_output, LINEAR
);
denseLayer.forward(d_input, d_output);
std::vector<float> output(outputSize);
cudaStatus = cudaMemcpy(
output.data(), d_output, sizeof(float) * outputSize, cudaMemcpyDeviceToHost
output.data(), d_output, sizeof(float) * outputSize,
cudaMemcpyDeviceToHost
);
EXPECT_EQ(cudaStatus, cudaSuccess);
@@ -130,26 +127,30 @@ TEST_F(DenseLayerTest, ForwardRandomWeightMatrixRelu) {
std::vector<float> input = {1.0f, 2.0f, 3.0f, 4.0f, -5.0f};
std::vector<std::vector<float>> weights = {
{0.5f, 1.2f, 0.7f, 0.4f, 1.3f},
{1.0f, 0.3f, 1.8f, 2.0f, 0.5f},
{0.2f, 1.5f, 0.9f, 0.6f, 0.0f},
{0.8f, 0.4f, 0.1f, 1.1f, 1.7f}
// clang-format off
std::vector<float> weights = {
0.5f, 1.2f, 0.7f, 0.4f,
1.3f, 1.0f, 0.3f, 1.8f,
2.0f, 0.5f, 0.2f, 1.5f,
0.9f, 0.6f, 0.0f, 0.8f,
0.4f, 0.1f, 1.1f, 1.7f
};
std::vector<float> biases = {0.2f, 0.5f, 0.7f, -1.1f};
// clang-format on
float* d_input;
float* d_output;
Layers::Dense denseLayer = commonTestSetup(
inputSize, outputSize, input, weights, biases, d_input, d_output, RELU
inputSize, outputSize, input, weights.data(), biases.data(), d_input, d_output, RELU
);
denseLayer.forward(d_input, d_output);
std::vector<float> output(outputSize);
cudaStatus = cudaMemcpy(
output.data(), d_output, sizeof(float) * outputSize, cudaMemcpyDeviceToHost
output.data(), d_output, sizeof(float) * outputSize,
cudaMemcpyDeviceToHost
);
EXPECT_EQ(cudaStatus, cudaSuccess);
@@ -170,21 +171,22 @@ TEST_F(DenseLayerTest, ForwardRandomWeightMatrixSigmoid) {
int inputSize = 5;
int outputSize = 4;
// clang-format off
std::vector<float> input = {0.1f, 0.2f, 0.3f, 0.4f, 0.5f};
std::vector<std::vector<float>> weights = {
{0.8f, 0.7f, 0.7f, 0.3f, 0.8f},
{0.1f, 0.4f, 0.8f, 0.0f, 0.2f},
{0.2f, 0.5f, 0.7f, 0.3f, 0.0f},
{0.1f, 0.7f, 0.6f, 1.0f, 0.4f}
std::vector<float> weights = {
0.8f, 0.7f, 0.7f, 0.3f, 0.8f,
0.1f, 0.4f, 0.8f, 0.0f, 0.2f,
0.2f, 0.5f, 0.7f, 0.3f, 0.0f,
0.1f, 0.7f, 0.6f, 1.0f, 0.4f
};
std::vector<float> biases = {0.1f, 0.2f, 0.3f, 0.4f};
// clang-format on
float* d_input;
float* d_output;
Layers::Dense denseLayer = commonTestSetup(
inputSize, outputSize, input, weights, biases, d_input, d_output,
inputSize, outputSize, input, weights.data(), biases.data(), d_input, d_output,
SIGMOID
);
@@ -192,7 +194,8 @@ TEST_F(DenseLayerTest, ForwardRandomWeightMatrixSigmoid) {
std::vector<float> output(outputSize);
cudaStatus = cudaMemcpy(
output.data(), d_output, sizeof(float) * outputSize, cudaMemcpyDeviceToHost
output.data(), d_output, sizeof(float) * outputSize,
cudaMemcpyDeviceToHost
);
EXPECT_EQ(cudaStatus, cudaSuccess);