mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-06 01:34:22 +00:00
Cleanup and refactor
This commit is contained in:
@@ -10,14 +10,8 @@
|
||||
#include "dense.cuh"
|
||||
#include "matrix_math.cuh"
|
||||
|
||||
Layers::Dense::Dense(
|
||||
int inputSize,
|
||||
int outputSize,
|
||||
Activation activation
|
||||
)
|
||||
: inputSize(inputSize),
|
||||
outputSize(outputSize),
|
||||
activation(activation) {
|
||||
Layers::Dense::Dense(int inputSize, int outputSize, Activation activation)
|
||||
: inputSize(inputSize), outputSize(outputSize), activation(activation) {
|
||||
// Allocate memory for weights and biases
|
||||
weights.resize(outputSize * inputSize);
|
||||
biases.resize(outputSize);
|
||||
@@ -52,7 +46,6 @@ void Layers::Dense::initializeBiases() {
|
||||
}
|
||||
|
||||
void Layers::Dense::forward(const float* d_input, float* d_output) {
|
||||
|
||||
mat_vec_mul_kernel<<<1, outputSize>>>(
|
||||
d_weights, d_input, d_output, inputSize, outputSize
|
||||
);
|
||||
@@ -63,15 +56,11 @@ void Layers::Dense::forward(const float* d_input, float* d_output) {
|
||||
|
||||
switch (activation) {
|
||||
case SIGMOID:
|
||||
sigmoid_kernel<<<1, outputSize>>>(
|
||||
d_output, d_output, outputSize
|
||||
);
|
||||
sigmoid_kernel<<<1, outputSize>>>(d_output, d_output, outputSize);
|
||||
break;
|
||||
|
||||
case RELU:
|
||||
relu_kernel<<<1, outputSize>>>(
|
||||
d_output, d_output, outputSize
|
||||
);
|
||||
relu_kernel<<<1, outputSize>>>(d_output, d_output, outputSize);
|
||||
break;
|
||||
|
||||
default:
|
||||
@@ -92,26 +81,12 @@ void Layers::Dense::toCuda() {
|
||||
));
|
||||
}
|
||||
|
||||
void Layers::Dense::setWeights(
|
||||
const std::vector<std::vector<float>>& weights_input
|
||||
) {
|
||||
int numWeights = inputSize * outputSize;
|
||||
|
||||
if (weights.size() != numWeights) {
|
||||
std::cerr << "Invalid number of weights" << std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
for (int i = 0; i < outputSize; ++i) {
|
||||
for (int j = 0; j < inputSize; ++j) {
|
||||
weights[i * inputSize + j] = weights_input[i][j];
|
||||
}
|
||||
}
|
||||
|
||||
void Layers::Dense::setWeights(const float* weights_input) {
|
||||
std::copy(weights_input, weights_input + weights.size(), weights.begin());
|
||||
toCuda();
|
||||
}
|
||||
|
||||
void Layers::Dense::setBiases(const std::vector<float>& biases_input) {
|
||||
std::copy(biases_input.begin(), biases_input.end(), biases.begin());
|
||||
void Layers::Dense::setBiases(const float* biases_input) {
|
||||
std::copy(biases_input, biases_input + biases.size(), biases.begin());
|
||||
toCuda();
|
||||
}
|
||||
Reference in New Issue
Block a user