Cleanup and refactor

This commit is contained in:
2024-03-11 20:39:44 +01:00
parent f3112311da
commit e0178e2d5c
7 changed files with 108 additions and 108 deletions

View File

@@ -23,7 +23,6 @@ Layers::Conv2d::Conv2d(
stride(stride),
numFilters(numFilters),
activation(activation) {
// Allocate memory for kernels
switch (padding)
{
@@ -41,12 +40,12 @@ Layers::Conv2d::Conv2d(
break;
}
kernels.resize(kernelSize * kernelSize * inputChannels * numFilters);
initializeKernels();
weights.resize(kernelSize * kernelSize * inputChannels * numFilters);
initializeWeights();
d_kernels = nullptr;
d_weights = nullptr;
CUDA_CHECK(cudaMalloc(
(void**)&d_kernels,
(void**)&d_weights,
sizeof(float) * kernelSize * kernelSize * inputChannels * numFilters
));
@@ -68,27 +67,32 @@ Layers::Conv2d::Conv2d(
}
Layers::Conv2d::~Conv2d() {
cudaFree(d_kernels);
cudaFree(d_weights);
cudaFree(d_biases);
cudaFree(d_padded);
}
void Layers::Conv2d::initializeKernels() {
std::fill(kernels.begin(), kernels.end(), 0.0f);
void Layers::Conv2d::initializeWeights() {
std::fill(weights.begin(), weights.end(), 0.0f);
}
void Layers::Conv2d::initializeBiases() {
std::fill(biases.begin(), biases.end(), 0.0f);
}
void Layers::Conv2d::setKernels(const std::vector<float>& kernels_input) {
std::copy(kernels_input.begin(), kernels_input.end(), kernels.begin());
void Layers::Conv2d::setWeights(const float* weights_input) {
std::copy(weights_input, weights_input + weights.size(), weights.begin());
toCuda();
}
void Layers::Conv2d::setBiases(const float* biases_input) {
std::copy(biases_input, biases_input + biases.size(), biases.begin());
toCuda();
}
void Layers::Conv2d::toCuda() {
CUDA_CHECK(cudaMemcpy(
d_kernels, kernels.data(),
d_weights, weights.data(),
sizeof(float) * kernelSize * kernelSize * inputChannels * numFilters,
cudaMemcpyHostToDevice
));
@@ -112,7 +116,7 @@ void Layers::Conv2d::forward(const float* d_input, float* d_output) {
// Convolve
THREADS_PER_BLOCK = outputSize * outputSize * numFilters;
convolution_kernel<<<1, THREADS_PER_BLOCK>>>(
d_padded, d_kernels, d_output, inputSize + (2 * paddingSize),
d_padded, d_weights, d_output, inputSize + (2 * paddingSize),
inputChannels, kernelSize, stride, numFilters, outputSize
);
@@ -155,7 +159,7 @@ void Layers::Conv2d::host_conv(const float* input, float* output) {
(i * stride + k) * inputSize +
(j * stride + l);
sum += kernels[kernelIndex] * input[inputIndex];
sum += weights[kernelIndex] * input[inputIndex];
}
}
}

View File

@@ -10,14 +10,8 @@
#include "dense.cuh"
#include "matrix_math.cuh"
Layers::Dense::Dense(
int inputSize,
int outputSize,
Activation activation
)
: inputSize(inputSize),
outputSize(outputSize),
activation(activation) {
Layers::Dense::Dense(int inputSize, int outputSize, Activation activation)
: inputSize(inputSize), outputSize(outputSize), activation(activation) {
// Allocate memory for weights and biases
weights.resize(outputSize * inputSize);
biases.resize(outputSize);
@@ -52,7 +46,6 @@ void Layers::Dense::initializeBiases() {
}
void Layers::Dense::forward(const float* d_input, float* d_output) {
mat_vec_mul_kernel<<<1, outputSize>>>(
d_weights, d_input, d_output, inputSize, outputSize
);
@@ -63,15 +56,11 @@ void Layers::Dense::forward(const float* d_input, float* d_output) {
switch (activation) {
case SIGMOID:
sigmoid_kernel<<<1, outputSize>>>(
d_output, d_output, outputSize
);
sigmoid_kernel<<<1, outputSize>>>(d_output, d_output, outputSize);
break;
case RELU:
relu_kernel<<<1, outputSize>>>(
d_output, d_output, outputSize
);
relu_kernel<<<1, outputSize>>>(d_output, d_output, outputSize);
break;
default:
@@ -92,26 +81,12 @@ void Layers::Dense::toCuda() {
));
}
void Layers::Dense::setWeights(
const std::vector<std::vector<float>>& weights_input
) {
int numWeights = inputSize * outputSize;
if (weights.size() != numWeights) {
std::cerr << "Invalid number of weights" << std::endl;
exit(EXIT_FAILURE);
}
for (int i = 0; i < outputSize; ++i) {
for (int j = 0; j < inputSize; ++j) {
weights[i * inputSize + j] = weights_input[i][j];
}
}
void Layers::Dense::setWeights(const float* weights_input) {
std::copy(weights_input, weights_input + weights.size(), weights.begin());
toCuda();
}
void Layers::Dense::setBiases(const std::vector<float>& biases_input) {
std::copy(biases_input.begin(), biases_input.end(), biases.begin());
void Layers::Dense::setBiases(const float* biases_input) {
std::copy(biases_input, biases_input + biases.size(), biases.begin());
toCuda();
}