mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-12-22 14:24:22 +00:00
Migrate conv2d layer to Tensor
This commit is contained in:
@@ -40,6 +40,18 @@ class Backend {
|
|||||||
const size_t input_size,
|
const size_t input_size,
|
||||||
const size_t output_size
|
const size_t output_size
|
||||||
) = 0;
|
) = 0;
|
||||||
|
|
||||||
|
virtual CUDANet::Tensor& conv2d(
|
||||||
|
const CUDANet::Tensor& weights,
|
||||||
|
const CUDANet::Tensor& biases,
|
||||||
|
const CUDANet::Tensor& input,
|
||||||
|
CUDANet::Tensor& output,
|
||||||
|
const CUDANet::Shape in_shape,
|
||||||
|
const CUDANet::Shape padding_shape,
|
||||||
|
const CUDANet::Shape kernel_shape,
|
||||||
|
const CUDANet::Shape stride_shape,
|
||||||
|
const CUDANet::Shape out_shape
|
||||||
|
) = 0;
|
||||||
};
|
};
|
||||||
|
|
||||||
} // namespace CUDANet
|
} // namespace CUDANet
|
||||||
@@ -36,6 +36,18 @@ class CUDA : public Backend {
|
|||||||
const size_t input_size,
|
const size_t input_size,
|
||||||
const size_t output_size
|
const size_t output_size
|
||||||
) override;
|
) override;
|
||||||
|
|
||||||
|
CUDANet::Tensor& conv2d(
|
||||||
|
const CUDANet::Tensor& weights,
|
||||||
|
const CUDANet::Tensor& biases,
|
||||||
|
const CUDANet::Tensor& input,
|
||||||
|
CUDANet::Tensor& output,
|
||||||
|
const CUDANet::Shape in_shape,
|
||||||
|
const CUDANet::Shape padding_shape,
|
||||||
|
const CUDANet::Shape kernel_shape,
|
||||||
|
const CUDANet::Shape stride_shape,
|
||||||
|
const CUDANet::Shape out_shape
|
||||||
|
) override;
|
||||||
};
|
};
|
||||||
|
|
||||||
} // namespace CUDANet::Backend
|
} // namespace CUDANet::Backend
|
||||||
@@ -1,39 +1,20 @@
|
|||||||
#ifndef CUDANET_CONVOLUTION_H
|
#pragma once
|
||||||
#define CUDANET_CONVOLUTION_H
|
|
||||||
|
|
||||||
#include <cuda_runtime.h>
|
#include <cuda_runtime.h>
|
||||||
#include "layer.hpp"
|
#include "layer.hpp"
|
||||||
|
|
||||||
namespace CUDANet::Kernels {
|
namespace CUDANet::Kernels {
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief Convolution kernel
|
|
||||||
*
|
|
||||||
* @param d_input Device pointer to the input matrix
|
|
||||||
* @param d_kernel Device pointer to the convolution kernel
|
|
||||||
* @param d_bias Device pointer to the bias
|
|
||||||
* @param d_output Device pointer to the output matrix
|
|
||||||
* @param inputSize Width and height of the input matrix
|
|
||||||
* @param nChannels Number of channels in the input matrix
|
|
||||||
* @param kernelSize Width and height of the convolution kernel
|
|
||||||
* @param stride Convolution stride
|
|
||||||
* @param nFilters Number of output filters
|
|
||||||
* @param outputSize Width and height of the output matrix
|
|
||||||
*/
|
|
||||||
__global__ void convolution(
|
__global__ void convolution(
|
||||||
const float* __restrict__ d_input,
|
const float* __restrict__ d_input,
|
||||||
const float* __restrict__ d_kernel,
|
const float* __restrict__ d_kernel,
|
||||||
const float* __restrict__ d_bias,
|
const float* __restrict__ d_bias,
|
||||||
float* __restrict__ d_output,
|
float* __restrict__ d_output,
|
||||||
const shape2d inputSize,
|
const Shape input_shape,
|
||||||
const int nChannels,
|
const Shape padding_shape,
|
||||||
const shape2d paddingSize,
|
const Shape kernel_shape,
|
||||||
const shape2d kernelSize,
|
const Shape stride_shape,
|
||||||
const shape2d stride,
|
const Shape output_shape
|
||||||
const int nFilters,
|
|
||||||
const shape2d outputSize
|
|
||||||
);
|
);
|
||||||
|
|
||||||
} // namespace CUDANet::Kernels
|
} // namespace CUDANet::Kernels
|
||||||
|
|
||||||
#endif // CUDANET_CONVOLUTION_H
|
|
||||||
@@ -1,5 +1,4 @@
|
|||||||
#ifndef CUDANET_CONV_LAYER_H
|
#pragma once
|
||||||
#define CUDANET_CONV_LAYER_H
|
|
||||||
|
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
|
||||||
@@ -12,149 +11,52 @@ namespace CUDANet::Layers {
|
|||||||
* @brief 2D convolutional layer
|
* @brief 2D convolutional layer
|
||||||
*
|
*
|
||||||
*/
|
*/
|
||||||
class Conv2d : public WeightedLayer, public TwoDLayer {
|
class Conv2d : public Layer {
|
||||||
public:
|
public:
|
||||||
/**
|
|
||||||
* @brief Construct a new Conv 2d layer
|
|
||||||
*
|
|
||||||
* @param inputSize Width and height of the input matrix
|
|
||||||
* @param inputChannels Number of channels in the input matrix
|
|
||||||
* @param kernelSize Width and height of the convolution kernel
|
|
||||||
* @param stride Convolution stride
|
|
||||||
* @param numFilters Number of output filters
|
|
||||||
* @param paddingSize Padding size
|
|
||||||
* @param activationType Activation function type ('RELU', 'SIGMOID',
|
|
||||||
* 'SOFTMAX' or 'NONE')
|
|
||||||
*/
|
|
||||||
Conv2d(
|
Conv2d(
|
||||||
shape2d inputSize,
|
CUDANet::Shape input_shape,
|
||||||
int inputChannels,
|
CUDANet::Shape kernel_shape,
|
||||||
shape2d kernelSize,
|
CUDANet::Shape stride_shape,
|
||||||
shape2d stride,
|
CUDANet::Shape padding_shape,
|
||||||
int numFilters,
|
CUDANet::Backend* backend
|
||||||
shape2d paddingSize,
|
|
||||||
ActivationType activationType
|
|
||||||
);
|
);
|
||||||
|
|
||||||
/**
|
~Conv2d() {};
|
||||||
* @brief Destroy the Conv 2d object
|
|
||||||
*
|
|
||||||
*/
|
|
||||||
~Conv2d();
|
|
||||||
|
|
||||||
/**
|
CUDANet::Tensor& forward(const CUDANet::Tensor& input) override;
|
||||||
* @brief Forward pass of the convolutional layer
|
|
||||||
*
|
|
||||||
* @param d_input Device pointer to the input matrix
|
|
||||||
* @return Device pointer to the output matrix
|
|
||||||
*/
|
|
||||||
float* forward(const float* d_input);
|
|
||||||
|
|
||||||
/**
|
CUDANet::Shape input_shape() override;
|
||||||
* @brief Set the weights of the convolutional layer
|
|
||||||
*
|
|
||||||
* @param weights_input Pointer to the weights
|
|
||||||
*/
|
|
||||||
void setWeights(const float* weights_input);
|
|
||||||
|
|
||||||
/**
|
CUDANet::Shape output_shape() override;
|
||||||
* @brief Get the weights of the convolutional layer
|
|
||||||
*
|
|
||||||
* @return std::vector<float>
|
|
||||||
*/
|
|
||||||
std::vector<float> getWeights();
|
|
||||||
|
|
||||||
/**
|
size_t input_size() override;
|
||||||
* @brief Set the biases of the convolutional layer
|
|
||||||
*
|
|
||||||
* @param biases_input Pointer to the biases
|
|
||||||
*/
|
|
||||||
void setBiases(const float* biases_input);
|
|
||||||
|
|
||||||
/**
|
size_t output_size();
|
||||||
* @brief Get the biases of the convolutional layer
|
|
||||||
*
|
|
||||||
* @return std::vector<float>
|
|
||||||
*/
|
|
||||||
std::vector<float> getBiases();
|
|
||||||
|
|
||||||
/**
|
void set_weights(void* input) override;
|
||||||
* @brief Get output size
|
|
||||||
*
|
|
||||||
* @return int output size
|
|
||||||
*/
|
|
||||||
int getOutputSize();
|
|
||||||
|
|
||||||
/**
|
CUDANet::Tensor& get_weights() override;
|
||||||
* @brief Get input size
|
|
||||||
*
|
|
||||||
* @return int input size
|
|
||||||
*/
|
|
||||||
int getInputSize();
|
|
||||||
|
|
||||||
/**
|
void set_biases(void* input) override;
|
||||||
* @brief Get the padding size of the layer
|
|
||||||
*
|
|
||||||
* @return int
|
|
||||||
*/
|
|
||||||
shape2d getPaddingSize() {
|
|
||||||
return paddingSize;
|
|
||||||
}
|
|
||||||
|
|
||||||
shape2d getOutputDims();
|
CUDANet::Tensor& get_biases() override;
|
||||||
|
|
||||||
|
CUDANet::Shape get_padding_shape();
|
||||||
|
|
||||||
private:
|
private:
|
||||||
// Inputs
|
CUDANet::Backend* backend;
|
||||||
shape2d inputSize;
|
|
||||||
int inputChannels;
|
|
||||||
|
|
||||||
// Outputs
|
CUDANet::Shape in_shape;
|
||||||
shape2d outputSize;
|
CUDANet::Shape out_shape;
|
||||||
|
|
||||||
// Kernel
|
CUDANet::Shape kernel_shape;
|
||||||
shape2d kernelSize;
|
CUDANet::Shape stride_shape;
|
||||||
shape2d stride;
|
CUDANet::Shape padding_shape;
|
||||||
shape2d paddingSize;
|
|
||||||
int numFilters;
|
|
||||||
|
|
||||||
// Kernels
|
CUDANet::Tensor weights;
|
||||||
std::vector<float> weights;
|
CUDANet::Tensor biases;
|
||||||
std::vector<float> biases;
|
|
||||||
|
|
||||||
float* forwardCPU(const float* input);
|
CUDANet::Tensor output;
|
||||||
|
|
||||||
// Cuda
|
|
||||||
#ifdef USE_CUDA
|
|
||||||
float* d_output;
|
|
||||||
float* d_weights;
|
|
||||||
float* d_biases;
|
|
||||||
|
|
||||||
float* forwardCUDA(const float* d_input);
|
|
||||||
void initCUDA();
|
|
||||||
void delCUDA();
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief Copy weights and biases to the device
|
|
||||||
*
|
|
||||||
*/
|
|
||||||
void toCuda();
|
|
||||||
#endif
|
|
||||||
|
|
||||||
Activation* activation;
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief Initialize weights of the convolutional layer with zeros
|
|
||||||
*
|
|
||||||
*/
|
|
||||||
void initializeWeights();
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief Initialize biases of the convolutional layer with zeros
|
|
||||||
*
|
|
||||||
*/
|
|
||||||
void initializeBiases();
|
|
||||||
};
|
};
|
||||||
|
|
||||||
} // namespace CUDANet::Layers
|
} // namespace CUDANet::Layers
|
||||||
|
|
||||||
#endif // CUDANET_CONV_LAYER_H
|
|
||||||
|
|||||||
@@ -14,7 +14,7 @@ namespace CUDANet::Layers {
|
|||||||
class Dense : public Layer {
|
class Dense : public Layer {
|
||||||
public:
|
public:
|
||||||
|
|
||||||
Dense(CUDANet::Backend *backend, CUDANet::Shape input_shape, CUDANet::Shape output_shape);
|
Dense(CUDANet::Shape input_shape, CUDANet::Shape output_shape, CUDANet::Backend *backend);
|
||||||
|
|
||||||
~Dense();
|
~Dense();
|
||||||
|
|
||||||
|
|||||||
@@ -9,52 +9,50 @@ __global__ void Kernels::convolution(
|
|||||||
const float* __restrict__ d_kernel,
|
const float* __restrict__ d_kernel,
|
||||||
const float* __restrict__ d_bias,
|
const float* __restrict__ d_bias,
|
||||||
float* __restrict__ d_output,
|
float* __restrict__ d_output,
|
||||||
const shape2d inputSize,
|
const Shape input_shape,
|
||||||
const int nChannels,
|
const Shape padding_shape,
|
||||||
const shape2d paddingSize,
|
const Shape kernel_shape,
|
||||||
const shape2d kernelSize,
|
const Shape stride_shape,
|
||||||
const shape2d stride,
|
const Shape output_shape
|
||||||
const int nFilters,
|
|
||||||
const shape2d outputSize
|
|
||||||
) {
|
) {
|
||||||
int j = blockDim.x * blockIdx.x + threadIdx.x;
|
int j = blockDim.x * blockIdx.x + threadIdx.x;
|
||||||
int i = blockDim.y * blockIdx.y + threadIdx.y;
|
int i = blockDim.y * blockIdx.y + threadIdx.y;
|
||||||
int f = blockDim.z * blockIdx.z + threadIdx.z;
|
int f = blockDim.z * blockIdx.z + threadIdx.z;
|
||||||
|
|
||||||
if (i >= outputSize.first || j >= outputSize.second || f >= nFilters) {
|
if (i >= output_shape[0] || j >= output_shape[1] || f >= output_shape[2]) {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
float sum = 0.0f;
|
float sum = 0.0f;
|
||||||
|
|
||||||
// Iterate over kernel and input matrix
|
// Iterate over kernel and input matrix
|
||||||
for (int c = 0; c < nChannels; c++) {
|
for (int c = 0; c < input_shape[2]; c++) {
|
||||||
for (int k = 0; k < kernelSize.first; k++) {
|
for (int k = 0; k < kernel_shape[0]; k++) {
|
||||||
for (int l = 0; l < kernelSize.second; l++) {
|
for (int l = 0; l < kernel_shape[1]; l++) {
|
||||||
// if i, j is in the padding region
|
// if i, j is in the padding region
|
||||||
if (i * stride.first + k < paddingSize.first ||
|
if (i * stride_shape[0] + k < padding_shape[0] ||
|
||||||
i * stride.first + k >=
|
i * stride_shape[0] + k >=
|
||||||
(inputSize.first + paddingSize.first) ||
|
(input_shape[0] + padding_shape[0]) ||
|
||||||
j * stride.second + l < paddingSize.second ||
|
j * stride_shape[1] + l < padding_shape[1] ||
|
||||||
j * stride.second + l >=
|
j * stride_shape[1] + l >=
|
||||||
(inputSize.second + paddingSize.second)) {
|
(input_shape[1] + padding_shape[1])) {
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
|
|
||||||
int kernelIndex =
|
int kernelIndex =
|
||||||
f * kernelSize.first * kernelSize.second * nChannels +
|
f * kernel_shape[0] * kernel_shape[1] * input_shape[2] +
|
||||||
c * kernelSize.first * kernelSize.second +
|
c * kernel_shape[0] * kernel_shape[1] +
|
||||||
k * kernelSize.second + l;
|
k * kernel_shape[1] + l;
|
||||||
int inputIndex = c * inputSize.first * inputSize.second +
|
int inputIndex = c * input_shape[0] * input_shape[1] +
|
||||||
(i * stride.first + k - paddingSize.first) *
|
(i * stride_shape[0] + k - padding_shape[0]) *
|
||||||
inputSize.second +
|
input_shape[1] +
|
||||||
(j * stride.second + l - paddingSize.second);
|
(j * stride_shape[1] + l - padding_shape[1]);
|
||||||
|
|
||||||
sum += d_kernel[kernelIndex] * d_input[inputIndex];
|
sum += d_kernel[kernelIndex] * d_input[inputIndex];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
d_output[f * outputSize.first * outputSize.second + i * outputSize.second + j] =
|
d_output[f * output_shape[0] * output_shape[1] + i * output_shape[1] + j] =
|
||||||
sum + d_bias[f];
|
sum + d_bias[f];
|
||||||
}
|
}
|
||||||
@@ -1,5 +1,6 @@
|
|||||||
#include "backend/cuda.cuh"
|
#include "backend/cuda.cuh"
|
||||||
#include "kernels/activation_functions.cuh"
|
#include "kernels/activation_functions.cuh"
|
||||||
|
#include "kernels/convolution.cuh"
|
||||||
#include "kernels/matmul.cuh"
|
#include "kernels/matmul.cuh"
|
||||||
#include "utils/cuda_helper.cuh"
|
#include "utils/cuda_helper.cuh"
|
||||||
|
|
||||||
@@ -80,3 +81,32 @@ CUDANet::Tensor& CUDA::dense(
|
|||||||
|
|
||||||
return output;
|
return output;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
CUDANet::Tensor& CUDA::conv2d(
|
||||||
|
const CUDANet::Tensor& weights,
|
||||||
|
const CUDANet::Tensor& biases,
|
||||||
|
const CUDANet::Tensor& input,
|
||||||
|
CUDANet::Tensor& output,
|
||||||
|
const CUDANet::Shape in_shape,
|
||||||
|
const CUDANet::Shape padding_shape,
|
||||||
|
const CUDANet::Shape kernel_shape,
|
||||||
|
const CUDANet::Shape stride_shape,
|
||||||
|
const CUDANet::Shape out_shape
|
||||||
|
) {
|
||||||
|
dim3 block(8, 8, 8);
|
||||||
|
dim3 grid(
|
||||||
|
(out_shape[0] + block.x - 1) / block.x,
|
||||||
|
(out_shape[1] + block.y - 1) / block.y,
|
||||||
|
(out_shape[3] + block.z - 1) / block.z
|
||||||
|
);
|
||||||
|
|
||||||
|
Kernels::convolution<<<grid, block>>>(
|
||||||
|
input.data<float>(), weights.data<float>(), biases.data<float>(),
|
||||||
|
output.data<float>(), in_shape, padding_shape, kernel_shape,
|
||||||
|
stride_shape, out_shape
|
||||||
|
);
|
||||||
|
CUDA_CHECK(cudaGetLastError());
|
||||||
|
CUDA_CHECK(cudaDeviceSynchronize());
|
||||||
|
|
||||||
|
return output;
|
||||||
|
}
|
||||||
@@ -49,25 +49,5 @@ void Conv2d::toCuda() {
|
|||||||
|
|
||||||
float* Conv2d::forwardCUDA(const float* d_input) {
|
float* Conv2d::forwardCUDA(const float* d_input) {
|
||||||
// Convolve
|
// Convolve
|
||||||
dim3 block(8, 8, 8);
|
|
||||||
dim3 grid(
|
|
||||||
(outputSize.first + block.x - 1) / block.x,
|
|
||||||
(outputSize.second + block.y - 1) / block.y,
|
|
||||||
(numFilters + block.z - 1) / block.z
|
|
||||||
);
|
|
||||||
|
|
||||||
CUDANet::Utils::clear(d_output, outputSize.first * outputSize.second * numFilters);
|
|
||||||
|
|
||||||
Kernels::convolution<<<grid, block>>>(
|
|
||||||
d_input, d_weights, d_biases, d_output, inputSize, inputChannels,
|
|
||||||
paddingSize, kernelSize, stride, numFilters, outputSize
|
|
||||||
);
|
|
||||||
CUDA_CHECK(cudaGetLastError());
|
|
||||||
|
|
||||||
// Apply activation
|
|
||||||
activation->activate(d_output);
|
|
||||||
|
|
||||||
CUDA_CHECK(cudaDeviceSynchronize());
|
|
||||||
|
|
||||||
return d_output;
|
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -1,111 +1,136 @@
|
|||||||
#include <stdexcept>
|
|
||||||
#include <vector>
|
|
||||||
|
|
||||||
#include "activation.hpp"
|
|
||||||
#include "conv2d.hpp"
|
#include "conv2d.hpp"
|
||||||
|
|
||||||
|
#include <format>
|
||||||
|
#include <stdexcept>
|
||||||
|
|
||||||
#include "layer.hpp"
|
#include "layer.hpp"
|
||||||
|
#include "tensor.hpp"
|
||||||
|
|
||||||
using namespace CUDANet::Layers;
|
using namespace CUDANet::Layers;
|
||||||
|
|
||||||
Conv2d::Conv2d(
|
Conv2d::Conv2d(
|
||||||
shape2d inputSize,
|
CUDANet::Shape input_shape,
|
||||||
int inputChannels,
|
CUDANet::Shape kernel_shape,
|
||||||
shape2d kernelSize,
|
CUDANet::Shape stride_shape,
|
||||||
shape2d stride,
|
CUDANet::Shape padding_shape,
|
||||||
int numFilters,
|
CUDANet::Backend* backend
|
||||||
shape2d paddingSize,
|
|
||||||
ActivationType activationType
|
|
||||||
)
|
)
|
||||||
: inputSize(inputSize),
|
: in_shape(input_shape),
|
||||||
inputChannels(inputChannels),
|
kernel_shape(kernel_shape),
|
||||||
kernelSize(kernelSize),
|
stride_shape(stride_shape),
|
||||||
stride(stride),
|
padding_shape(padding_shape),
|
||||||
numFilters(numFilters),
|
backend(backend) {
|
||||||
paddingSize(paddingSize) {
|
if (in_shape.size() != 3) {
|
||||||
outputSize = {
|
throw std::runtime_error(
|
||||||
(inputSize.first - kernelSize.first + 2 * paddingSize.first) /
|
std::format(
|
||||||
stride.first +
|
"Invalid input shape. Expected 3 dims, got {}", in_shape
|
||||||
1,
|
)
|
||||||
(inputSize.second - kernelSize.second + 2 * paddingSize.second) /
|
);
|
||||||
stride.second +
|
}
|
||||||
1
|
|
||||||
};
|
|
||||||
|
|
||||||
activation = new Activation(
|
if (kernel_shape.size() != 3) {
|
||||||
activationType, outputSize.first * outputSize.second * numFilters
|
throw std::runtime_error(
|
||||||
|
std::format(
|
||||||
|
"Invalid kernel shape. Expected 3 dims, got {}", kernel_shape
|
||||||
|
)
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (stride_shape.size() != 2) {
|
||||||
|
throw std::runtime_error(
|
||||||
|
std::format(
|
||||||
|
"Invalid stride shape. Expected 2 dims, got {}", stride_shape
|
||||||
|
)
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (padding_shape.size() != 2) {
|
||||||
|
throw std::runtime_error(
|
||||||
|
std::format(
|
||||||
|
"Invalid padding shape. Expected 2 dims, got {}", padding_shape
|
||||||
|
)
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
size_t out_h = (in_shape[0] - kernel_shape[0] + 2 * padding_shape[0]) /
|
||||||
|
stride_shape[0] +
|
||||||
|
1;
|
||||||
|
size_t out_w = (in_shape[1] - kernel_shape[1] + 2 * padding_shape[1]) /
|
||||||
|
stride_shape[1] +
|
||||||
|
1;
|
||||||
|
out_shape.resize(3);
|
||||||
|
out_shape[0] = out_h;
|
||||||
|
out_shape[1] = out_w;
|
||||||
|
out_shape[2] = kernel_shape[2];
|
||||||
|
output = CUDANet::Tensor(
|
||||||
|
Shape{out_shape[0] * out_shape[1] * out_shape[3]},
|
||||||
|
CUDANet::DType::FLOAT32, backend
|
||||||
);
|
);
|
||||||
|
|
||||||
weights.resize(
|
weights = CUDANet::Tensor(
|
||||||
kernelSize.first * kernelSize.second * inputChannels * numFilters
|
Shape{
|
||||||
|
kernel_shape[0] * kernel_shape[1] * kernel_shape[2] * in_shape[2]
|
||||||
|
},
|
||||||
|
CUDANet::DType::FLOAT32, backend
|
||||||
|
);
|
||||||
|
biases = CUDANet::Tensor(
|
||||||
|
Shape{kernel_shape[2]}, CUDANet::DType::FLOAT32, backend
|
||||||
);
|
);
|
||||||
initializeWeights();
|
|
||||||
|
|
||||||
biases.resize(numFilters);
|
weights.zero();
|
||||||
initializeBiases();
|
biases.zero();
|
||||||
|
|
||||||
#ifdef USE_CUDA
|
|
||||||
initCUDA();
|
|
||||||
toCuda();
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
Conv2d::~Conv2d() {
|
Conv2d::~Conv2d() {}
|
||||||
#ifdef USE_CUDA
|
|
||||||
delCUDA();
|
CUDANet::Tensor& Conv2d::forward(const CUDANet::Tensor& input) {
|
||||||
#endif
|
output.zero();
|
||||||
delete activation;
|
backend->conv2d(
|
||||||
|
weights,
|
||||||
|
biases,
|
||||||
|
input,
|
||||||
|
output,
|
||||||
|
in_shape,
|
||||||
|
padding_shape,
|
||||||
|
kernel_shape,
|
||||||
|
stride_shape,
|
||||||
|
out_shape
|
||||||
|
);
|
||||||
|
return output;
|
||||||
}
|
}
|
||||||
|
|
||||||
void Conv2d::initializeWeights() {
|
CUDANet::Shape Conv2d::input_shape() {
|
||||||
std::fill(weights.begin(), weights.end(), 0.0f);
|
return in_shape;
|
||||||
}
|
}
|
||||||
|
|
||||||
void Conv2d::initializeBiases() {
|
CUDANet::Shape Conv2d::output_shape() {
|
||||||
std::fill(biases.begin(), biases.end(), 0.0f);
|
return out_shape;
|
||||||
}
|
}
|
||||||
|
|
||||||
void Conv2d::setWeights(const float* weights_input) {
|
size_t Conv2d::input_size() {
|
||||||
std::copy(weights_input, weights_input + weights.size(), weights.begin());
|
return sizeof(float) * in_shape[0] * in_shape[1] * in_shape[2];
|
||||||
#ifdef USE_CUDA
|
|
||||||
toCuda();
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
std::vector<float> Conv2d::getWeights() {
|
size_t Conv2d::output_size() {
|
||||||
|
return sizeof(float) * out_shape[0] * out_shape[1] * out_shape[2];
|
||||||
|
}
|
||||||
|
|
||||||
|
void Conv2d::set_weights(void* input) {
|
||||||
|
weights.set_data<float>(static_cast<float*>(input));
|
||||||
|
}
|
||||||
|
|
||||||
|
CUDANet::Tensor& Conv2d::get_weights() {
|
||||||
return weights;
|
return weights;
|
||||||
}
|
}
|
||||||
|
|
||||||
void Conv2d::setBiases(const float* biases_input) {
|
void Conv2d::set_biases(void* input) {
|
||||||
std::copy(biases_input, biases_input + biases.size(), biases.begin());
|
biases.set_data<float>(static_cast<float*>(input));
|
||||||
#ifdef USE_CUDA
|
|
||||||
toCuda();
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
std::vector<float> Conv2d::getBiases() {
|
CUDANet::Tensor& Conv2d::get_biases() {
|
||||||
return biases;
|
return biases;
|
||||||
}
|
}
|
||||||
|
|
||||||
float* Conv2d::forwardCPU(const float* input) {
|
CUDANet::Shape Conv2d::get_padding_shape() {
|
||||||
throw std::logic_error("Not implemented");
|
return padding_shape;
|
||||||
}
|
|
||||||
|
|
||||||
float* Conv2d::forward(const float* input) {
|
|
||||||
#ifdef USE_CUDA
|
|
||||||
return forwardCUDA(input);
|
|
||||||
#else
|
|
||||||
return forwardCPU(input);
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
|
|
||||||
int Conv2d::getOutputSize() {
|
|
||||||
return outputSize.first * outputSize.second * numFilters;
|
|
||||||
}
|
|
||||||
|
|
||||||
int Conv2d::getInputSize() {
|
|
||||||
return inputSize.first * inputSize.second * inputChannels;
|
|
||||||
}
|
|
||||||
|
|
||||||
shape2d Conv2d::getOutputDims() {
|
|
||||||
return outputSize;
|
|
||||||
}
|
}
|
||||||
@@ -5,34 +5,30 @@
|
|||||||
|
|
||||||
using namespace CUDANet::Layers;
|
using namespace CUDANet::Layers;
|
||||||
|
|
||||||
Dense::Dense(CUDANet::Backend* backend, CUDANet::Shape in, CUDANet::Shape out)
|
Dense::Dense(CUDANet::Shape in, CUDANet::Shape out, CUDANet::Backend* backend)
|
||||||
: backend(backend),
|
: backend(backend),
|
||||||
in_shape(in),
|
in_shape(in),
|
||||||
out_shape(out),
|
out_shape(out) {
|
||||||
weights(
|
|
||||||
CUDANet::Tensor(Shape{in[0] * out[0]}, CUDANet::DType::FLOAT32, backend)
|
|
||||||
),
|
|
||||||
biases(CUDANet::Tensor(Shape{out[0]}, CUDANet::DType::FLOAT32, backend)),
|
|
||||||
output(CUDANet::Tensor(Shape{out[0]}, CUDANet::DType::FLOAT32, backend)) {
|
|
||||||
// Allocate memory for weights and biases
|
|
||||||
|
|
||||||
if (in.size() != 1) {
|
if (in.size() != 1) {
|
||||||
throw std::runtime_error(
|
throw std::runtime_error(
|
||||||
std::format("Invalid shape. Expected [1], got {}", in)
|
std::format("Invalid shape. Expected [1], got {}", in_shape)
|
||||||
);
|
);
|
||||||
}
|
}
|
||||||
|
|
||||||
if (out.size() != 1) {
|
if (out.size() != 1) {
|
||||||
throw std::runtime_error(
|
throw std::runtime_error(
|
||||||
std::format("Invalid shape. Expected [1], got {}", out)
|
std::format("Invalid shape. Expected [1], got {}", out_shape)
|
||||||
);
|
);
|
||||||
}
|
}
|
||||||
|
|
||||||
auto input_len = in[0];
|
weights = CUDANet::Tensor(Shape{in[0] * out[0]}, CUDANet::DType::FLOAT32, backend);
|
||||||
auto output_len = out[0];
|
biases = CUDANet::Tensor(Shape{out[0]}, CUDANet::DType::FLOAT32, backend);
|
||||||
|
output = CUDANet::Tensor(Shape{out[0]}, CUDANet::DType::FLOAT32, backend);
|
||||||
|
|
||||||
weights.zero();
|
weights.zero();
|
||||||
biases.zero();
|
biases.zero();
|
||||||
|
output.zero();
|
||||||
}
|
}
|
||||||
|
|
||||||
Dense::~Dense() {}
|
Dense::~Dense() {}
|
||||||
|
|||||||
Reference in New Issue
Block a user