mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-12-22 14:24:22 +00:00
136 lines
3.1 KiB
C++
136 lines
3.1 KiB
C++
#include "conv2d.hpp"
|
|
|
|
#include <format>
|
|
#include <stdexcept>
|
|
|
|
#include "layer.hpp"
|
|
#include "tensor.hpp"
|
|
|
|
using namespace CUDANet::Layers;
|
|
|
|
Conv2d::Conv2d(
|
|
CUDANet::Shape input_shape,
|
|
CUDANet::Shape kernel_shape,
|
|
CUDANet::Shape stride_shape,
|
|
CUDANet::Shape padding_shape,
|
|
CUDANet::Backend* backend
|
|
)
|
|
: in_shape(input_shape),
|
|
kernel_shape(kernel_shape),
|
|
stride_shape(stride_shape),
|
|
padding_shape(padding_shape),
|
|
backend(backend) {
|
|
if (in_shape.size() != 3) {
|
|
throw std::runtime_error(
|
|
std::format(
|
|
"Invalid input shape. Expected 3 dims, got {}", in_shape
|
|
)
|
|
);
|
|
}
|
|
|
|
if (kernel_shape.size() != 3) {
|
|
throw std::runtime_error(
|
|
std::format(
|
|
"Invalid kernel shape. Expected 3 dims, got {}", kernel_shape
|
|
)
|
|
);
|
|
}
|
|
|
|
if (stride_shape.size() != 2) {
|
|
throw std::runtime_error(
|
|
std::format(
|
|
"Invalid stride shape. Expected 2 dims, got {}", stride_shape
|
|
)
|
|
);
|
|
}
|
|
|
|
if (padding_shape.size() != 2) {
|
|
throw std::runtime_error(
|
|
std::format(
|
|
"Invalid padding shape. Expected 2 dims, got {}", padding_shape
|
|
)
|
|
);
|
|
}
|
|
|
|
size_t out_h = (in_shape[0] - kernel_shape[0] + 2 * padding_shape[0]) /
|
|
stride_shape[0] +
|
|
1;
|
|
size_t out_w = (in_shape[1] - kernel_shape[1] + 2 * padding_shape[1]) /
|
|
stride_shape[1] +
|
|
1;
|
|
out_shape.resize(3);
|
|
out_shape[0] = out_h;
|
|
out_shape[1] = out_w;
|
|
out_shape[2] = kernel_shape[2];
|
|
output = CUDANet::Tensor(
|
|
Shape{out_shape[0] * out_shape[1] * out_shape[3]},
|
|
CUDANet::DType::FLOAT32, backend
|
|
);
|
|
|
|
weights = CUDANet::Tensor(
|
|
Shape{
|
|
kernel_shape[0] * kernel_shape[1] * kernel_shape[2] * in_shape[2]
|
|
},
|
|
CUDANet::DType::FLOAT32, backend
|
|
);
|
|
biases = CUDANet::Tensor(
|
|
Shape{kernel_shape[2]}, CUDANet::DType::FLOAT32, backend
|
|
);
|
|
|
|
weights.zero();
|
|
biases.zero();
|
|
}
|
|
|
|
Conv2d::~Conv2d() {}
|
|
|
|
CUDANet::Tensor& Conv2d::forward(const CUDANet::Tensor& input) {
|
|
output.zero();
|
|
backend->conv2d(
|
|
weights,
|
|
biases,
|
|
input,
|
|
output,
|
|
in_shape,
|
|
padding_shape,
|
|
kernel_shape,
|
|
stride_shape,
|
|
out_shape
|
|
);
|
|
return output;
|
|
}
|
|
|
|
CUDANet::Shape Conv2d::input_shape() {
|
|
return in_shape;
|
|
}
|
|
|
|
CUDANet::Shape Conv2d::output_shape() {
|
|
return out_shape;
|
|
}
|
|
|
|
size_t Conv2d::input_size() {
|
|
return sizeof(float) * in_shape[0] * in_shape[1] * in_shape[2];
|
|
}
|
|
|
|
size_t Conv2d::output_size() {
|
|
return sizeof(float) * out_shape[0] * out_shape[1] * out_shape[2];
|
|
}
|
|
|
|
void Conv2d::set_weights(void* input) {
|
|
weights.set_data<float>(static_cast<float*>(input));
|
|
}
|
|
|
|
CUDANet::Tensor& Conv2d::get_weights() {
|
|
return weights;
|
|
}
|
|
|
|
void Conv2d::set_biases(void* input) {
|
|
biases.set_data<float>(static_cast<float*>(input));
|
|
}
|
|
|
|
CUDANet::Tensor& Conv2d::get_biases() {
|
|
return biases;
|
|
}
|
|
|
|
CUDANet::Shape Conv2d::get_padding_shape() {
|
|
return padding_shape;
|
|
} |