Files
CUDANet/src/layers/conv2d.cpp

136 lines
3.1 KiB
C++

#include "conv2d.hpp"
#include <format>
#include <stdexcept>
#include "layer.hpp"
#include "tensor.hpp"
using namespace CUDANet::Layers;
Conv2d::Conv2d(
CUDANet::Shape input_shape,
CUDANet::Shape kernel_shape,
CUDANet::Shape stride_shape,
CUDANet::Shape padding_shape,
CUDANet::Backend* backend
)
: in_shape(input_shape),
kernel_shape(kernel_shape),
stride_shape(stride_shape),
padding_shape(padding_shape),
backend(backend) {
if (in_shape.size() != 3) {
throw std::runtime_error(
std::format(
"Invalid input shape. Expected 3 dims, got {}", in_shape
)
);
}
if (kernel_shape.size() != 3) {
throw std::runtime_error(
std::format(
"Invalid kernel shape. Expected 3 dims, got {}", kernel_shape
)
);
}
if (stride_shape.size() != 2) {
throw std::runtime_error(
std::format(
"Invalid stride shape. Expected 2 dims, got {}", stride_shape
)
);
}
if (padding_shape.size() != 2) {
throw std::runtime_error(
std::format(
"Invalid padding shape. Expected 2 dims, got {}", padding_shape
)
);
}
size_t out_h = (in_shape[0] - kernel_shape[0] + 2 * padding_shape[0]) /
stride_shape[0] +
1;
size_t out_w = (in_shape[1] - kernel_shape[1] + 2 * padding_shape[1]) /
stride_shape[1] +
1;
out_shape.resize(3);
out_shape[0] = out_h;
out_shape[1] = out_w;
out_shape[2] = kernel_shape[2];
output = CUDANet::Tensor(
Shape{out_shape[0] * out_shape[1] * out_shape[3]},
CUDANet::DType::FLOAT32, backend
);
weights = CUDANet::Tensor(
Shape{
kernel_shape[0] * kernel_shape[1] * kernel_shape[2] * in_shape[2]
},
CUDANet::DType::FLOAT32, backend
);
biases = CUDANet::Tensor(
Shape{kernel_shape[2]}, CUDANet::DType::FLOAT32, backend
);
weights.zero();
biases.zero();
}
Conv2d::~Conv2d() {}
CUDANet::Tensor& Conv2d::forward(const CUDANet::Tensor& input) {
output.zero();
backend->conv2d(
weights,
biases,
input,
output,
in_shape,
padding_shape,
kernel_shape,
stride_shape,
out_shape
);
return output;
}
CUDANet::Shape Conv2d::input_shape() {
return in_shape;
}
CUDANet::Shape Conv2d::output_shape() {
return out_shape;
}
size_t Conv2d::input_size() {
return sizeof(float) * in_shape[0] * in_shape[1] * in_shape[2];
}
size_t Conv2d::output_size() {
return sizeof(float) * out_shape[0] * out_shape[1] * out_shape[2];
}
void Conv2d::set_weights(void* input) {
weights.set_data<float>(static_cast<float*>(input));
}
CUDANet::Tensor& Conv2d::get_weights() {
return weights;
}
void Conv2d::set_biases(void* input) {
biases.set_data<float>(static_cast<float*>(input));
}
CUDANet::Tensor& Conv2d::get_biases() {
return biases;
}
CUDANet::Shape Conv2d::get_padding_shape() {
return padding_shape;
}