mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-12-22 14:24:22 +00:00
Migrate conv2d layer to Tensor
This commit is contained in:
@@ -9,52 +9,50 @@ __global__ void Kernels::convolution(
|
||||
const float* __restrict__ d_kernel,
|
||||
const float* __restrict__ d_bias,
|
||||
float* __restrict__ d_output,
|
||||
const shape2d inputSize,
|
||||
const int nChannels,
|
||||
const shape2d paddingSize,
|
||||
const shape2d kernelSize,
|
||||
const shape2d stride,
|
||||
const int nFilters,
|
||||
const shape2d outputSize
|
||||
const Shape input_shape,
|
||||
const Shape padding_shape,
|
||||
const Shape kernel_shape,
|
||||
const Shape stride_shape,
|
||||
const Shape output_shape
|
||||
) {
|
||||
int j = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
int i = blockDim.y * blockIdx.y + threadIdx.y;
|
||||
int f = blockDim.z * blockIdx.z + threadIdx.z;
|
||||
|
||||
if (i >= outputSize.first || j >= outputSize.second || f >= nFilters) {
|
||||
if (i >= output_shape[0] || j >= output_shape[1] || f >= output_shape[2]) {
|
||||
return;
|
||||
}
|
||||
|
||||
float sum = 0.0f;
|
||||
|
||||
// Iterate over kernel and input matrix
|
||||
for (int c = 0; c < nChannels; c++) {
|
||||
for (int k = 0; k < kernelSize.first; k++) {
|
||||
for (int l = 0; l < kernelSize.second; l++) {
|
||||
for (int c = 0; c < input_shape[2]; c++) {
|
||||
for (int k = 0; k < kernel_shape[0]; k++) {
|
||||
for (int l = 0; l < kernel_shape[1]; l++) {
|
||||
// if i, j is in the padding region
|
||||
if (i * stride.first + k < paddingSize.first ||
|
||||
i * stride.first + k >=
|
||||
(inputSize.first + paddingSize.first) ||
|
||||
j * stride.second + l < paddingSize.second ||
|
||||
j * stride.second + l >=
|
||||
(inputSize.second + paddingSize.second)) {
|
||||
if (i * stride_shape[0] + k < padding_shape[0] ||
|
||||
i * stride_shape[0] + k >=
|
||||
(input_shape[0] + padding_shape[0]) ||
|
||||
j * stride_shape[1] + l < padding_shape[1] ||
|
||||
j * stride_shape[1] + l >=
|
||||
(input_shape[1] + padding_shape[1])) {
|
||||
continue;
|
||||
}
|
||||
|
||||
int kernelIndex =
|
||||
f * kernelSize.first * kernelSize.second * nChannels +
|
||||
c * kernelSize.first * kernelSize.second +
|
||||
k * kernelSize.second + l;
|
||||
int inputIndex = c * inputSize.first * inputSize.second +
|
||||
(i * stride.first + k - paddingSize.first) *
|
||||
inputSize.second +
|
||||
(j * stride.second + l - paddingSize.second);
|
||||
f * kernel_shape[0] * kernel_shape[1] * input_shape[2] +
|
||||
c * kernel_shape[0] * kernel_shape[1] +
|
||||
k * kernel_shape[1] + l;
|
||||
int inputIndex = c * input_shape[0] * input_shape[1] +
|
||||
(i * stride_shape[0] + k - padding_shape[0]) *
|
||||
input_shape[1] +
|
||||
(j * stride_shape[1] + l - padding_shape[1]);
|
||||
|
||||
sum += d_kernel[kernelIndex] * d_input[inputIndex];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
d_output[f * outputSize.first * outputSize.second + i * outputSize.second + j] =
|
||||
d_output[f * output_shape[0] * output_shape[1] + i * output_shape[1] + j] =
|
||||
sum + d_bias[f];
|
||||
}
|
||||
@@ -1,5 +1,6 @@
|
||||
#include "backend/cuda.cuh"
|
||||
#include "kernels/activation_functions.cuh"
|
||||
#include "kernels/convolution.cuh"
|
||||
#include "kernels/matmul.cuh"
|
||||
#include "utils/cuda_helper.cuh"
|
||||
|
||||
@@ -57,7 +58,7 @@ CUDANet::Tensor& CUDA::dense(
|
||||
const CUDANet::Tensor& weights,
|
||||
const CUDANet::Tensor& biases,
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
CUDANet::Tensor& output,
|
||||
const size_t input_size,
|
||||
const size_t output_size
|
||||
) {
|
||||
@@ -78,5 +79,34 @@ CUDANet::Tensor& CUDA::dense(
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
|
||||
return output;
|
||||
}
|
||||
|
||||
CUDANet::Tensor& CUDA::conv2d(
|
||||
const CUDANet::Tensor& weights,
|
||||
const CUDANet::Tensor& biases,
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
const CUDANet::Shape in_shape,
|
||||
const CUDANet::Shape padding_shape,
|
||||
const CUDANet::Shape kernel_shape,
|
||||
const CUDANet::Shape stride_shape,
|
||||
const CUDANet::Shape out_shape
|
||||
) {
|
||||
dim3 block(8, 8, 8);
|
||||
dim3 grid(
|
||||
(out_shape[0] + block.x - 1) / block.x,
|
||||
(out_shape[1] + block.y - 1) / block.y,
|
||||
(out_shape[3] + block.z - 1) / block.z
|
||||
);
|
||||
|
||||
Kernels::convolution<<<grid, block>>>(
|
||||
input.data<float>(), weights.data<float>(), biases.data<float>(),
|
||||
output.data<float>(), in_shape, padding_shape, kernel_shape,
|
||||
stride_shape, out_shape
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
|
||||
return output;
|
||||
}
|
||||
@@ -49,25 +49,5 @@ void Conv2d::toCuda() {
|
||||
|
||||
float* Conv2d::forwardCUDA(const float* d_input) {
|
||||
// Convolve
|
||||
dim3 block(8, 8, 8);
|
||||
dim3 grid(
|
||||
(outputSize.first + block.x - 1) / block.x,
|
||||
(outputSize.second + block.y - 1) / block.y,
|
||||
(numFilters + block.z - 1) / block.z
|
||||
);
|
||||
|
||||
CUDANet::Utils::clear(d_output, outputSize.first * outputSize.second * numFilters);
|
||||
|
||||
Kernels::convolution<<<grid, block>>>(
|
||||
d_input, d_weights, d_biases, d_output, inputSize, inputChannels,
|
||||
paddingSize, kernelSize, stride, numFilters, outputSize
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
// Apply activation
|
||||
activation->activate(d_output);
|
||||
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
|
||||
return d_output;
|
||||
}
|
||||
|
||||
@@ -1,111 +1,136 @@
|
||||
#include <stdexcept>
|
||||
#include <vector>
|
||||
|
||||
#include "activation.hpp"
|
||||
#include "conv2d.hpp"
|
||||
|
||||
#include <format>
|
||||
#include <stdexcept>
|
||||
|
||||
#include "layer.hpp"
|
||||
#include "tensor.hpp"
|
||||
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
Conv2d::Conv2d(
|
||||
shape2d inputSize,
|
||||
int inputChannels,
|
||||
shape2d kernelSize,
|
||||
shape2d stride,
|
||||
int numFilters,
|
||||
shape2d paddingSize,
|
||||
ActivationType activationType
|
||||
CUDANet::Shape input_shape,
|
||||
CUDANet::Shape kernel_shape,
|
||||
CUDANet::Shape stride_shape,
|
||||
CUDANet::Shape padding_shape,
|
||||
CUDANet::Backend* backend
|
||||
)
|
||||
: inputSize(inputSize),
|
||||
inputChannels(inputChannels),
|
||||
kernelSize(kernelSize),
|
||||
stride(stride),
|
||||
numFilters(numFilters),
|
||||
paddingSize(paddingSize) {
|
||||
outputSize = {
|
||||
(inputSize.first - kernelSize.first + 2 * paddingSize.first) /
|
||||
stride.first +
|
||||
1,
|
||||
(inputSize.second - kernelSize.second + 2 * paddingSize.second) /
|
||||
stride.second +
|
||||
1
|
||||
};
|
||||
: in_shape(input_shape),
|
||||
kernel_shape(kernel_shape),
|
||||
stride_shape(stride_shape),
|
||||
padding_shape(padding_shape),
|
||||
backend(backend) {
|
||||
if (in_shape.size() != 3) {
|
||||
throw std::runtime_error(
|
||||
std::format(
|
||||
"Invalid input shape. Expected 3 dims, got {}", in_shape
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
activation = new Activation(
|
||||
activationType, outputSize.first * outputSize.second * numFilters
|
||||
if (kernel_shape.size() != 3) {
|
||||
throw std::runtime_error(
|
||||
std::format(
|
||||
"Invalid kernel shape. Expected 3 dims, got {}", kernel_shape
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
if (stride_shape.size() != 2) {
|
||||
throw std::runtime_error(
|
||||
std::format(
|
||||
"Invalid stride shape. Expected 2 dims, got {}", stride_shape
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
if (padding_shape.size() != 2) {
|
||||
throw std::runtime_error(
|
||||
std::format(
|
||||
"Invalid padding shape. Expected 2 dims, got {}", padding_shape
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
size_t out_h = (in_shape[0] - kernel_shape[0] + 2 * padding_shape[0]) /
|
||||
stride_shape[0] +
|
||||
1;
|
||||
size_t out_w = (in_shape[1] - kernel_shape[1] + 2 * padding_shape[1]) /
|
||||
stride_shape[1] +
|
||||
1;
|
||||
out_shape.resize(3);
|
||||
out_shape[0] = out_h;
|
||||
out_shape[1] = out_w;
|
||||
out_shape[2] = kernel_shape[2];
|
||||
output = CUDANet::Tensor(
|
||||
Shape{out_shape[0] * out_shape[1] * out_shape[3]},
|
||||
CUDANet::DType::FLOAT32, backend
|
||||
);
|
||||
|
||||
weights.resize(
|
||||
kernelSize.first * kernelSize.second * inputChannels * numFilters
|
||||
weights = CUDANet::Tensor(
|
||||
Shape{
|
||||
kernel_shape[0] * kernel_shape[1] * kernel_shape[2] * in_shape[2]
|
||||
},
|
||||
CUDANet::DType::FLOAT32, backend
|
||||
);
|
||||
biases = CUDANet::Tensor(
|
||||
Shape{kernel_shape[2]}, CUDANet::DType::FLOAT32, backend
|
||||
);
|
||||
initializeWeights();
|
||||
|
||||
biases.resize(numFilters);
|
||||
initializeBiases();
|
||||
|
||||
#ifdef USE_CUDA
|
||||
initCUDA();
|
||||
toCuda();
|
||||
#endif
|
||||
weights.zero();
|
||||
biases.zero();
|
||||
}
|
||||
|
||||
Conv2d::~Conv2d() {
|
||||
#ifdef USE_CUDA
|
||||
delCUDA();
|
||||
#endif
|
||||
delete activation;
|
||||
Conv2d::~Conv2d() {}
|
||||
|
||||
CUDANet::Tensor& Conv2d::forward(const CUDANet::Tensor& input) {
|
||||
output.zero();
|
||||
backend->conv2d(
|
||||
weights,
|
||||
biases,
|
||||
input,
|
||||
output,
|
||||
in_shape,
|
||||
padding_shape,
|
||||
kernel_shape,
|
||||
stride_shape,
|
||||
out_shape
|
||||
);
|
||||
return output;
|
||||
}
|
||||
|
||||
void Conv2d::initializeWeights() {
|
||||
std::fill(weights.begin(), weights.end(), 0.0f);
|
||||
CUDANet::Shape Conv2d::input_shape() {
|
||||
return in_shape;
|
||||
}
|
||||
|
||||
void Conv2d::initializeBiases() {
|
||||
std::fill(biases.begin(), biases.end(), 0.0f);
|
||||
CUDANet::Shape Conv2d::output_shape() {
|
||||
return out_shape;
|
||||
}
|
||||
|
||||
void Conv2d::setWeights(const float* weights_input) {
|
||||
std::copy(weights_input, weights_input + weights.size(), weights.begin());
|
||||
#ifdef USE_CUDA
|
||||
toCuda();
|
||||
#endif
|
||||
size_t Conv2d::input_size() {
|
||||
return sizeof(float) * in_shape[0] * in_shape[1] * in_shape[2];
|
||||
}
|
||||
|
||||
std::vector<float> Conv2d::getWeights() {
|
||||
size_t Conv2d::output_size() {
|
||||
return sizeof(float) * out_shape[0] * out_shape[1] * out_shape[2];
|
||||
}
|
||||
|
||||
void Conv2d::set_weights(void* input) {
|
||||
weights.set_data<float>(static_cast<float*>(input));
|
||||
}
|
||||
|
||||
CUDANet::Tensor& Conv2d::get_weights() {
|
||||
return weights;
|
||||
}
|
||||
|
||||
void Conv2d::setBiases(const float* biases_input) {
|
||||
std::copy(biases_input, biases_input + biases.size(), biases.begin());
|
||||
#ifdef USE_CUDA
|
||||
toCuda();
|
||||
#endif
|
||||
void Conv2d::set_biases(void* input) {
|
||||
biases.set_data<float>(static_cast<float*>(input));
|
||||
}
|
||||
|
||||
std::vector<float> Conv2d::getBiases() {
|
||||
CUDANet::Tensor& Conv2d::get_biases() {
|
||||
return biases;
|
||||
}
|
||||
|
||||
float* Conv2d::forwardCPU(const float* input) {
|
||||
throw std::logic_error("Not implemented");
|
||||
}
|
||||
|
||||
float* Conv2d::forward(const float* input) {
|
||||
#ifdef USE_CUDA
|
||||
return forwardCUDA(input);
|
||||
#else
|
||||
return forwardCPU(input);
|
||||
#endif
|
||||
}
|
||||
|
||||
int Conv2d::getOutputSize() {
|
||||
return outputSize.first * outputSize.second * numFilters;
|
||||
}
|
||||
|
||||
int Conv2d::getInputSize() {
|
||||
return inputSize.first * inputSize.second * inputChannels;
|
||||
}
|
||||
|
||||
shape2d Conv2d::getOutputDims() {
|
||||
return outputSize;
|
||||
CUDANet::Shape Conv2d::get_padding_shape() {
|
||||
return padding_shape;
|
||||
}
|
||||
@@ -5,34 +5,30 @@
|
||||
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
Dense::Dense(CUDANet::Backend* backend, CUDANet::Shape in, CUDANet::Shape out)
|
||||
Dense::Dense(CUDANet::Shape in, CUDANet::Shape out, CUDANet::Backend* backend)
|
||||
: backend(backend),
|
||||
in_shape(in),
|
||||
out_shape(out),
|
||||
weights(
|
||||
CUDANet::Tensor(Shape{in[0] * out[0]}, CUDANet::DType::FLOAT32, backend)
|
||||
),
|
||||
biases(CUDANet::Tensor(Shape{out[0]}, CUDANet::DType::FLOAT32, backend)),
|
||||
output(CUDANet::Tensor(Shape{out[0]}, CUDANet::DType::FLOAT32, backend)) {
|
||||
// Allocate memory for weights and biases
|
||||
out_shape(out) {
|
||||
|
||||
if (in.size() != 1) {
|
||||
throw std::runtime_error(
|
||||
std::format("Invalid shape. Expected [1], got {}", in)
|
||||
std::format("Invalid shape. Expected [1], got {}", in_shape)
|
||||
);
|
||||
}
|
||||
|
||||
if (out.size() != 1) {
|
||||
throw std::runtime_error(
|
||||
std::format("Invalid shape. Expected [1], got {}", out)
|
||||
std::format("Invalid shape. Expected [1], got {}", out_shape)
|
||||
);
|
||||
}
|
||||
|
||||
auto input_len = in[0];
|
||||
auto output_len = out[0];
|
||||
weights = CUDANet::Tensor(Shape{in[0] * out[0]}, CUDANet::DType::FLOAT32, backend);
|
||||
biases = CUDANet::Tensor(Shape{out[0]}, CUDANet::DType::FLOAT32, backend);
|
||||
output = CUDANet::Tensor(Shape{out[0]}, CUDANet::DType::FLOAT32, backend);
|
||||
|
||||
weights.zero();
|
||||
biases.zero();
|
||||
output.zero();
|
||||
}
|
||||
|
||||
Dense::~Dense() {}
|
||||
|
||||
Reference in New Issue
Block a user