mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-06 01:34:22 +00:00
Add Kernels namespace
This commit is contained in:
@@ -12,8 +12,7 @@ set(LIBRARY_SOURCES
|
|||||||
src/utils/cuda_helper.cu
|
src/utils/cuda_helper.cu
|
||||||
src/kernels/activations.cu
|
src/kernels/activations.cu
|
||||||
src/kernels/convolution.cu
|
src/kernels/convolution.cu
|
||||||
src/kernels/padding.cu
|
src/kernels/matmul.cu
|
||||||
src/kernels/matrix_math.cu
|
|
||||||
src/layers/dense.cu
|
src/layers/dense.cu
|
||||||
src/layers/conv2d.cu
|
src/layers/conv2d.cu
|
||||||
)
|
)
|
||||||
|
|||||||
@@ -1,19 +1,14 @@
|
|||||||
#ifndef ACTIVATIONS_H
|
#ifndef ACTIVATIONS_H
|
||||||
#define ACTIVATIONS_H
|
#define ACTIVATIONS_H
|
||||||
|
|
||||||
__global__ void
|
namespace Kernels {
|
||||||
sigmoid_kernel(const float* __restrict__ src, float* __restrict__ dst, int len);
|
|
||||||
|
|
||||||
__global__ void
|
__global__ void
|
||||||
relu_kernel(const float* __restrict__ src, float* __restrict__ dst, int len);
|
sigmoid(const float* __restrict__ src, float* __restrict__ dst, int len);
|
||||||
|
|
||||||
__global__ void
|
__global__ void
|
||||||
linear_kernel(const float* __restrict__ src, float* __restrict__ dst, int len);
|
relu(const float* __restrict__ src, float* __restrict__ dst, int len);
|
||||||
|
|
||||||
enum Activation {
|
} // namespace Kernels
|
||||||
SIGMOID,
|
|
||||||
RELU,
|
|
||||||
LINEAR
|
|
||||||
};
|
|
||||||
|
|
||||||
#endif // ACTIVATIONS_H
|
#endif // ACTIVATIONS_H
|
||||||
@@ -1,7 +1,18 @@
|
|||||||
#ifndef CONVOLUTION_H
|
#ifndef CONVOLUTION_H
|
||||||
#define CONVOLUTION_H
|
#define CONVOLUTION_H
|
||||||
|
|
||||||
__global__ void convolution_kernel(
|
namespace Kernels {
|
||||||
|
|
||||||
|
__global__ void padding(
|
||||||
|
const float* d_input,
|
||||||
|
float* d_padded,
|
||||||
|
int w,
|
||||||
|
int h,
|
||||||
|
int n,
|
||||||
|
int p
|
||||||
|
);
|
||||||
|
|
||||||
|
__global__ void convolution(
|
||||||
const float* d_input,
|
const float* d_input,
|
||||||
const float* d_kernel,
|
const float* d_kernel,
|
||||||
float* d_output,
|
float* d_output,
|
||||||
@@ -13,4 +24,6 @@ __global__ void convolution_kernel(
|
|||||||
int outputSize
|
int outputSize
|
||||||
);
|
);
|
||||||
|
|
||||||
|
} // namespace Kernels
|
||||||
|
|
||||||
#endif // CONVOLUTION_H
|
#endif // CONVOLUTION_H
|
||||||
@@ -1,7 +1,9 @@
|
|||||||
#ifndef MATRIX_MATH_H
|
#ifndef MATMUL_H
|
||||||
#define MATRIX_MATH_H
|
#define MATMUL_H
|
||||||
|
|
||||||
__global__ void mat_vec_mul_kernel(
|
namespace Kernels {
|
||||||
|
|
||||||
|
__global__ void mat_vec_mul(
|
||||||
const float* d_matrix,
|
const float* d_matrix,
|
||||||
const float* d_vector,
|
const float* d_vector,
|
||||||
float* d_output,
|
float* d_output,
|
||||||
@@ -9,11 +11,13 @@ __global__ void mat_vec_mul_kernel(
|
|||||||
int h
|
int h
|
||||||
);
|
);
|
||||||
|
|
||||||
__global__ void vec_vec_add_kernel(
|
__global__ void vec_vec_add(
|
||||||
const float* d_vector1,
|
const float* d_vector1,
|
||||||
const float* d_vector2,
|
const float* d_vector2,
|
||||||
float* d_output,
|
float* d_output,
|
||||||
int w
|
int w
|
||||||
);
|
);
|
||||||
|
|
||||||
#endif // MATRIX_MATH_H
|
} // namespace Kernels
|
||||||
|
|
||||||
|
#endif // MATMUL_H
|
||||||
@@ -1,18 +0,0 @@
|
|||||||
#ifndef PADDING_H
|
|
||||||
#define PADDING_H
|
|
||||||
|
|
||||||
__global__ void pad_matrix_kernel(
|
|
||||||
const float* d_input,
|
|
||||||
float* d_padded,
|
|
||||||
int w,
|
|
||||||
int h,
|
|
||||||
int n,
|
|
||||||
int p
|
|
||||||
);
|
|
||||||
|
|
||||||
enum Padding {
|
|
||||||
SAME,
|
|
||||||
VALID
|
|
||||||
};
|
|
||||||
|
|
||||||
#endif // PADDING_H
|
|
||||||
@@ -5,7 +5,7 @@
|
|||||||
#include <vector>
|
#include <vector>
|
||||||
|
|
||||||
#include "activations.cuh"
|
#include "activations.cuh"
|
||||||
#include "padding.cuh"
|
#include "convolution.cuh"
|
||||||
#include "ilayer.cuh"
|
#include "ilayer.cuh"
|
||||||
|
|
||||||
namespace Layers {
|
namespace Layers {
|
||||||
@@ -13,13 +13,13 @@ namespace Layers {
|
|||||||
class Conv2d : public ILayer {
|
class Conv2d : public ILayer {
|
||||||
public:
|
public:
|
||||||
Conv2d(
|
Conv2d(
|
||||||
int inputSize,
|
int inputSize,
|
||||||
int inputChannels,
|
int inputChannels,
|
||||||
int kernelSize,
|
int kernelSize,
|
||||||
int stride,
|
int stride,
|
||||||
Padding padding,
|
Layers::Padding padding,
|
||||||
int numFilters,
|
int numFilters,
|
||||||
Activation activation
|
Layers::Activation activation
|
||||||
);
|
);
|
||||||
~Conv2d();
|
~Conv2d();
|
||||||
|
|
||||||
@@ -52,7 +52,7 @@ class Conv2d : public ILayer {
|
|||||||
float* d_padded;
|
float* d_padded;
|
||||||
|
|
||||||
// Kernels
|
// Kernels
|
||||||
Activation activation;
|
Layers::Activation activation;
|
||||||
|
|
||||||
void initializeWeights();
|
void initializeWeights();
|
||||||
void initializeBiases();
|
void initializeBiases();
|
||||||
|
|||||||
@@ -14,7 +14,7 @@ class Dense : public ILayer {
|
|||||||
Dense(
|
Dense(
|
||||||
int inputSize,
|
int inputSize,
|
||||||
int outputSize,
|
int outputSize,
|
||||||
Activation activation
|
Layers::Activation activation
|
||||||
);
|
);
|
||||||
~Dense();
|
~Dense();
|
||||||
|
|
||||||
@@ -32,7 +32,7 @@ class Dense : public ILayer {
|
|||||||
std::vector<float> weights;
|
std::vector<float> weights;
|
||||||
std::vector<float> biases;
|
std::vector<float> biases;
|
||||||
|
|
||||||
Activation activation;
|
Layers::Activation activation;
|
||||||
|
|
||||||
void initializeWeights();
|
void initializeWeights();
|
||||||
void initializeBiases();
|
void initializeBiases();
|
||||||
|
|||||||
@@ -6,6 +6,17 @@
|
|||||||
|
|
||||||
namespace Layers {
|
namespace Layers {
|
||||||
|
|
||||||
|
enum Activation {
|
||||||
|
SIGMOID,
|
||||||
|
RELU,
|
||||||
|
NONE
|
||||||
|
};
|
||||||
|
|
||||||
|
enum Padding {
|
||||||
|
SAME,
|
||||||
|
VALID
|
||||||
|
};
|
||||||
|
|
||||||
class ILayer {
|
class ILayer {
|
||||||
public:
|
public:
|
||||||
virtual ~ILayer() {}
|
virtual ~ILayer() {}
|
||||||
@@ -29,7 +40,7 @@ class ILayer {
|
|||||||
std::vector<float> weights;
|
std::vector<float> weights;
|
||||||
std::vector<float> biases;
|
std::vector<float> biases;
|
||||||
|
|
||||||
Activation activation;
|
Layers::Activation activation;
|
||||||
};
|
};
|
||||||
|
|
||||||
} // namespace Layers
|
} // namespace Layers
|
||||||
|
|||||||
@@ -2,7 +2,7 @@
|
|||||||
|
|
||||||
#include "activations.cuh"
|
#include "activations.cuh"
|
||||||
|
|
||||||
__global__ void sigmoid_kernel(
|
__global__ void Kernels::sigmoid(
|
||||||
const float* __restrict__ src,
|
const float* __restrict__ src,
|
||||||
float* __restrict__ dst,
|
float* __restrict__ dst,
|
||||||
int len
|
int len
|
||||||
@@ -16,7 +16,7 @@ __global__ void sigmoid_kernel(
|
|||||||
}
|
}
|
||||||
|
|
||||||
__global__ void
|
__global__ void
|
||||||
relu_kernel(const float* __restrict__ src, float* __restrict__ dst, int len) {
|
Kernels::relu(const float* __restrict__ src, float* __restrict__ dst, int len) {
|
||||||
int stride = gridDim.x * blockDim.x;
|
int stride = gridDim.x * blockDim.x;
|
||||||
int tid = blockDim.x * blockIdx.x + threadIdx.x;
|
int tid = blockDim.x * blockIdx.x + threadIdx.x;
|
||||||
|
|
||||||
|
|||||||
@@ -1,7 +1,84 @@
|
|||||||
#include "convolution.cuh"
|
#include "convolution.cuh"
|
||||||
#include <iostream>
|
#include <iostream>
|
||||||
|
|
||||||
__global__ void convolution_kernel(
|
/*
|
||||||
|
Pads matrix width x height x n_channels to width + 2 * padding x height + 2 *
|
||||||
|
padding x n_channels Matrix is represented as a pointer to a vector
|
||||||
|
|
||||||
|
For example:
|
||||||
|
|
||||||
|
w = 2
|
||||||
|
h = 3
|
||||||
|
n = 2
|
||||||
|
p = 1
|
||||||
|
|
||||||
|
Channel 0:
|
||||||
|
0 1
|
||||||
|
2 3
|
||||||
|
4 5
|
||||||
|
Channel 1:
|
||||||
|
6 7
|
||||||
|
8 9
|
||||||
|
10 11
|
||||||
|
|
||||||
|
Is represented as:
|
||||||
|
|
||||||
|
0 1 2 3 4 5 6 7 8 9 10 11
|
||||||
|
|
||||||
|
Padded result (as a continuous vector):
|
||||||
|
|
||||||
|
0.0f, 0.0f, 0.0f, 0.0f,
|
||||||
|
0.0f, 0.0f, 1.0f, 0.0f,
|
||||||
|
0.0f, 2.0f, 3.0f, 0.0f,
|
||||||
|
0.0f, 4.0f, 5.0f, 0.0f,
|
||||||
|
0.0f, 0.0f, 0.0f, 0.0f,
|
||||||
|
0.0f, 0.0f, 0.0f, 0.0f,
|
||||||
|
0.0f, 6.0f, 7.0f, 0.0f,
|
||||||
|
0.0f, 8.0f, 9.0f, 0.0f,
|
||||||
|
9.0f, 10.0f, 11.0f, 0.0f,
|
||||||
|
0.0f, 0.0f, 0.0f, 0.0f
|
||||||
|
|
||||||
|
Args:
|
||||||
|
d_input: Pointer to input vector representing matrix
|
||||||
|
d_padded: Pointer to output vector representing padded matrix (needs to be
|
||||||
|
pre-allocated)
|
||||||
|
w: Width of input matrix
|
||||||
|
h: Height of input matrix
|
||||||
|
n: Number of channels in input matrix
|
||||||
|
p: Padding
|
||||||
|
*/
|
||||||
|
__global__ void Kernels::padding(
|
||||||
|
const float* d_input,
|
||||||
|
float* d_padded,
|
||||||
|
int w,
|
||||||
|
int h,
|
||||||
|
int n,
|
||||||
|
int p
|
||||||
|
) {
|
||||||
|
int tid = blockDim.x * blockIdx.x + threadIdx.x;
|
||||||
|
|
||||||
|
if (tid >= (w + 2 * p) * (h + 2 * p) * n) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
int idx = tid;
|
||||||
|
|
||||||
|
// unravel index into padded matrix
|
||||||
|
int i_n = idx / ((w + 2 * p) * (h + 2 * p));
|
||||||
|
int i_h = idx % ((w + 2 * p) * (h + 2 * p)) / (w + 2 * p);
|
||||||
|
int i_w = idx % (w + 2 * p);
|
||||||
|
|
||||||
|
// if i is in the padding region
|
||||||
|
if (i_w < p || i_w >= (w + p) || i_h < p || i_h >= (h + p)) {
|
||||||
|
d_padded[tid] = 0.0f;
|
||||||
|
} else {
|
||||||
|
// Get index into input vector
|
||||||
|
int i_orig = i_n * w * h + (i_h - p) * w + (i_w - p);
|
||||||
|
d_padded[tid] = d_input[i_orig];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__global__ void Kernels::convolution(
|
||||||
const float* d_input,
|
const float* d_input,
|
||||||
const float* d_kernel,
|
const float* d_kernel,
|
||||||
float* d_output,
|
float* d_output,
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
#include "matrix_math.cuh"
|
#include "matmul.cuh"
|
||||||
|
|
||||||
__global__ void mat_vec_mul_kernel(
|
__global__ void Kernels::mat_vec_mul(
|
||||||
const float* d_matrix,
|
const float* d_matrix,
|
||||||
const float* d_vector,
|
const float* d_vector,
|
||||||
float* d_output,
|
float* d_output,
|
||||||
@@ -22,7 +22,7 @@ __global__ void mat_vec_mul_kernel(
|
|||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
__global__ void vec_vec_add_kernel(
|
__global__ void Kernels::vec_vec_add(
|
||||||
const float* d_vector1,
|
const float* d_vector1,
|
||||||
const float* d_vector2,
|
const float* d_vector2,
|
||||||
float* d_output,
|
float* d_output,
|
||||||
@@ -1,78 +0,0 @@
|
|||||||
#include <vector>
|
|
||||||
|
|
||||||
/*
|
|
||||||
Pads matrix width x height x n_channels to width + 2 * padding x height + 2 *
|
|
||||||
padding x n_channels Matrix is represented as a pointer to a vector
|
|
||||||
|
|
||||||
For example:
|
|
||||||
|
|
||||||
w = 2
|
|
||||||
h = 3
|
|
||||||
n = 2
|
|
||||||
p = 1
|
|
||||||
|
|
||||||
Channel 0:
|
|
||||||
0 1
|
|
||||||
2 3
|
|
||||||
4 5
|
|
||||||
Channel 1:
|
|
||||||
6 7
|
|
||||||
8 9
|
|
||||||
10 11
|
|
||||||
|
|
||||||
Is represented as:
|
|
||||||
|
|
||||||
0 1 2 3 4 5 6 7 8 9 10 11
|
|
||||||
|
|
||||||
Padded result (as a continuous vector):
|
|
||||||
|
|
||||||
0.0f, 0.0f, 0.0f, 0.0f,
|
|
||||||
0.0f, 0.0f, 1.0f, 0.0f,
|
|
||||||
0.0f, 2.0f, 3.0f, 0.0f,
|
|
||||||
0.0f, 4.0f, 5.0f, 0.0f,
|
|
||||||
0.0f, 0.0f, 0.0f, 0.0f,
|
|
||||||
0.0f, 0.0f, 0.0f, 0.0f,
|
|
||||||
0.0f, 6.0f, 7.0f, 0.0f,
|
|
||||||
0.0f, 8.0f, 9.0f, 0.0f,
|
|
||||||
9.0f, 10.0f, 11.0f, 0.0f,
|
|
||||||
0.0f, 0.0f, 0.0f, 0.0f
|
|
||||||
|
|
||||||
Args:
|
|
||||||
d_input: Pointer to input vector representing matrix
|
|
||||||
d_padded: Pointer to output vector representing padded matrix (needs to be
|
|
||||||
pre-allocated)
|
|
||||||
w: Width of input matrix
|
|
||||||
h: Height of input matrix
|
|
||||||
n: Number of channels in input matrix
|
|
||||||
p: Padding
|
|
||||||
*/
|
|
||||||
__global__ void pad_matrix_kernel(
|
|
||||||
const float* d_input,
|
|
||||||
float* d_padded,
|
|
||||||
int w,
|
|
||||||
int h,
|
|
||||||
int n,
|
|
||||||
int p
|
|
||||||
) {
|
|
||||||
int tid = blockDim.x * blockIdx.x + threadIdx.x;
|
|
||||||
|
|
||||||
if (tid >= (w + 2 * p) * (h + 2 * p) * n) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
int idx = tid;
|
|
||||||
|
|
||||||
// unravel index into padded matrix
|
|
||||||
int i_n = idx / ((w + 2 * p) * (h + 2 * p));
|
|
||||||
int i_h = idx % ((w + 2 * p) * (h + 2 * p)) / (w + 2 * p);
|
|
||||||
int i_w = idx % (w + 2 * p);
|
|
||||||
|
|
||||||
// if i is in the padding region
|
|
||||||
if (i_w < p || i_w >= (w + p) || i_h < p || i_h >= (h + p)) {
|
|
||||||
d_padded[tid] = 0.0f;
|
|
||||||
} else {
|
|
||||||
// Get index into input vector
|
|
||||||
int i_orig = i_n * w * h + (i_h - p) * w + (i_w - p);
|
|
||||||
d_padded[tid] = d_input[i_orig];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
@@ -5,17 +5,16 @@
|
|||||||
#include "conv2d.cuh"
|
#include "conv2d.cuh"
|
||||||
#include "convolution.cuh"
|
#include "convolution.cuh"
|
||||||
#include "cuda_helper.cuh"
|
#include "cuda_helper.cuh"
|
||||||
#include "matrix_math.cuh"
|
#include "matmul.cuh"
|
||||||
#include "padding.cuh"
|
|
||||||
|
|
||||||
Layers::Conv2d::Conv2d(
|
Layers::Conv2d::Conv2d(
|
||||||
int inputSize,
|
int inputSize,
|
||||||
int inputChannels,
|
int inputChannels,
|
||||||
int kernelSize,
|
int kernelSize,
|
||||||
int stride,
|
int stride,
|
||||||
Padding padding,
|
Layers::Padding padding,
|
||||||
int numFilters,
|
int numFilters,
|
||||||
Activation activation
|
Layers::Activation activation
|
||||||
)
|
)
|
||||||
: inputSize(inputSize),
|
: inputSize(inputSize),
|
||||||
inputChannels(inputChannels),
|
inputChannels(inputChannels),
|
||||||
@@ -23,21 +22,19 @@ Layers::Conv2d::Conv2d(
|
|||||||
stride(stride),
|
stride(stride),
|
||||||
numFilters(numFilters),
|
numFilters(numFilters),
|
||||||
activation(activation) {
|
activation(activation) {
|
||||||
|
switch (padding) {
|
||||||
|
case SAME:
|
||||||
|
outputSize = inputSize;
|
||||||
|
paddingSize = ((stride - 1) * inputSize - stride + kernelSize) / 2;
|
||||||
|
break;
|
||||||
|
|
||||||
switch (padding)
|
case VALID:
|
||||||
{
|
paddingSize = 0;
|
||||||
case SAME:
|
outputSize = (inputSize - kernelSize) / stride + 1;
|
||||||
outputSize = inputSize;
|
break;
|
||||||
paddingSize = ((stride - 1) * inputSize - stride + kernelSize) / 2;
|
|
||||||
break;
|
|
||||||
|
|
||||||
case VALID:
|
default:
|
||||||
paddingSize = 0;
|
break;
|
||||||
outputSize = (inputSize - kernelSize) / stride + 1;
|
|
||||||
break;
|
|
||||||
|
|
||||||
default:
|
|
||||||
break;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
weights.resize(kernelSize * kernelSize * inputChannels * numFilters);
|
weights.resize(kernelSize * kernelSize * inputChannels * numFilters);
|
||||||
@@ -109,19 +106,19 @@ void Layers::Conv2d::forward(const float* d_input, float* d_output) {
|
|||||||
int THREADS_PER_BLOCK = (inputSize + 2 * paddingSize) *
|
int THREADS_PER_BLOCK = (inputSize + 2 * paddingSize) *
|
||||||
(inputSize + 2 * paddingSize) * inputChannels;
|
(inputSize + 2 * paddingSize) * inputChannels;
|
||||||
|
|
||||||
pad_matrix_kernel<<<1, THREADS_PER_BLOCK>>>(
|
Kernels::padding<<<1, THREADS_PER_BLOCK>>>(
|
||||||
d_input, d_padded, inputSize, inputSize, inputChannels, paddingSize
|
d_input, d_padded, inputSize, inputSize, inputChannels, paddingSize
|
||||||
);
|
);
|
||||||
|
|
||||||
// Convolve
|
// Convolve
|
||||||
THREADS_PER_BLOCK = outputSize * outputSize * numFilters;
|
THREADS_PER_BLOCK = outputSize * outputSize * numFilters;
|
||||||
convolution_kernel<<<1, THREADS_PER_BLOCK>>>(
|
Kernels::convolution<<<1, THREADS_PER_BLOCK>>>(
|
||||||
d_padded, d_weights, d_output, inputSize + (2 * paddingSize),
|
d_padded, d_weights, d_output, inputSize + (2 * paddingSize),
|
||||||
inputChannels, kernelSize, stride, numFilters, outputSize
|
inputChannels, kernelSize, stride, numFilters, outputSize
|
||||||
);
|
);
|
||||||
|
|
||||||
// Add bias
|
// Add bias
|
||||||
vec_vec_add_kernel<<<1, biases.size()>>>(
|
Kernels::vec_vec_add<<<1, biases.size()>>>(
|
||||||
d_biases, d_output, d_output, biases.size()
|
d_biases, d_output, d_output, biases.size()
|
||||||
);
|
);
|
||||||
|
|
||||||
@@ -138,8 +135,7 @@ outputSize x numFilters
|
|||||||
*/
|
*/
|
||||||
void Layers::Conv2d::host_conv(const float* input, float* output) {
|
void Layers::Conv2d::host_conv(const float* input, float* output) {
|
||||||
// Iterate over output matrix
|
// Iterate over output matrix
|
||||||
for (int tid = 0; tid < outputSize * outputSize * numFilters; tid++)
|
for (int tid = 0; tid < outputSize * outputSize * numFilters; tid++) {
|
||||||
{
|
|
||||||
// Get output index
|
// Get output index
|
||||||
int f = tid / (outputSize * outputSize);
|
int f = tid / (outputSize * outputSize);
|
||||||
int i = tid % (outputSize * outputSize) / outputSize;
|
int i = tid % (outputSize * outputSize) / outputSize;
|
||||||
@@ -153,19 +149,17 @@ void Layers::Conv2d::host_conv(const float* input, float* output) {
|
|||||||
for (int c = 0; c < inputChannels; c++) {
|
for (int c = 0; c < inputChannels; c++) {
|
||||||
int kernelIndex =
|
int kernelIndex =
|
||||||
f * kernelSize * kernelSize * inputChannels +
|
f * kernelSize * kernelSize * inputChannels +
|
||||||
c * kernelSize * kernelSize + k * kernelSize +
|
c * kernelSize * kernelSize + k * kernelSize + l;
|
||||||
l;
|
|
||||||
int inputIndex = c * inputSize * inputSize +
|
int inputIndex = c * inputSize * inputSize +
|
||||||
(i * stride + k) * inputSize +
|
(i * stride + k) * inputSize +
|
||||||
(j * stride + l);
|
(j * stride + l);
|
||||||
|
|
||||||
sum += weights[kernelIndex] * input[inputIndex];
|
sum += weights[kernelIndex] * input[inputIndex];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
int outputIndex =
|
int outputIndex = f * outputSize * outputSize + i * outputSize + j;
|
||||||
f * outputSize * outputSize + i * outputSize + j;
|
|
||||||
|
|
||||||
output[outputIndex] = sum;
|
output[outputIndex] = sum;
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -8,9 +8,9 @@
|
|||||||
#include "activations.cuh"
|
#include "activations.cuh"
|
||||||
#include "cuda_helper.cuh"
|
#include "cuda_helper.cuh"
|
||||||
#include "dense.cuh"
|
#include "dense.cuh"
|
||||||
#include "matrix_math.cuh"
|
#include "matmul.cuh"
|
||||||
|
|
||||||
Layers::Dense::Dense(int inputSize, int outputSize, Activation activation)
|
Layers::Dense::Dense(int inputSize, int outputSize, Layers::Activation activation)
|
||||||
: inputSize(inputSize), outputSize(outputSize), activation(activation) {
|
: inputSize(inputSize), outputSize(outputSize), activation(activation) {
|
||||||
// Allocate memory for weights and biases
|
// Allocate memory for weights and biases
|
||||||
weights.resize(outputSize * inputSize);
|
weights.resize(outputSize * inputSize);
|
||||||
@@ -46,21 +46,21 @@ void Layers::Dense::initializeBiases() {
|
|||||||
}
|
}
|
||||||
|
|
||||||
void Layers::Dense::forward(const float* d_input, float* d_output) {
|
void Layers::Dense::forward(const float* d_input, float* d_output) {
|
||||||
mat_vec_mul_kernel<<<1, outputSize>>>(
|
Kernels::mat_vec_mul<<<1, outputSize>>>(
|
||||||
d_weights, d_input, d_output, inputSize, outputSize
|
d_weights, d_input, d_output, inputSize, outputSize
|
||||||
);
|
);
|
||||||
|
|
||||||
vec_vec_add_kernel<<<1, outputSize>>>(
|
Kernels::vec_vec_add<<<1, outputSize>>>(
|
||||||
d_biases, d_output, d_output, outputSize
|
d_biases, d_output, d_output, outputSize
|
||||||
);
|
);
|
||||||
|
|
||||||
switch (activation) {
|
switch (activation) {
|
||||||
case SIGMOID:
|
case SIGMOID:
|
||||||
sigmoid_kernel<<<1, outputSize>>>(d_output, d_output, outputSize);
|
Kernels::sigmoid<<<1, outputSize>>>(d_output, d_output, outputSize);
|
||||||
break;
|
break;
|
||||||
|
|
||||||
case RELU:
|
case RELU:
|
||||||
relu_kernel<<<1, outputSize>>>(d_output, d_output, outputSize);
|
Kernels::relu<<<1, outputSize>>>(d_output, d_output, outputSize);
|
||||||
break;
|
break;
|
||||||
|
|
||||||
default:
|
default:
|
||||||
|
|||||||
@@ -25,7 +25,7 @@ TEST(ActivationsTest, SigmoidSanityCheck) {
|
|||||||
cudaStatus = cudaMemcpy(d_input, input, sizeof(float) * 3, cudaMemcpyHostToDevice);
|
cudaStatus = cudaMemcpy(d_input, input, sizeof(float) * 3, cudaMemcpyHostToDevice);
|
||||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||||
|
|
||||||
sigmoid_kernel<<<1, 3>>>(d_input, d_output, 3);
|
Kernels::sigmoid<<<1, 3>>>(d_input, d_output, 3);
|
||||||
cudaStatus = cudaDeviceSynchronize();
|
cudaStatus = cudaDeviceSynchronize();
|
||||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||||
|
|
||||||
|
|||||||
@@ -3,7 +3,7 @@
|
|||||||
|
|
||||||
#include <iostream>
|
#include <iostream>
|
||||||
|
|
||||||
#include "padding.cuh"
|
#include "convolution.cuh"
|
||||||
|
|
||||||
TEST(PaddingTest, SimplePaddingTest) {
|
TEST(PaddingTest, SimplePaddingTest) {
|
||||||
cudaError_t cudaStatus;
|
cudaError_t cudaStatus;
|
||||||
@@ -51,7 +51,7 @@ TEST(PaddingTest, SimplePaddingTest) {
|
|||||||
int THREADS_PER_BLOCK = 64;
|
int THREADS_PER_BLOCK = 64;
|
||||||
int BLOCKS = paddedSize / THREADS_PER_BLOCK + 1;
|
int BLOCKS = paddedSize / THREADS_PER_BLOCK + 1;
|
||||||
|
|
||||||
pad_matrix_kernel<<<BLOCKS, THREADS_PER_BLOCK>>>(
|
Kernels::padding<<<BLOCKS, THREADS_PER_BLOCK>>>(
|
||||||
d_input, d_padded, w, h, n, p
|
d_input, d_padded, w, h, n, p
|
||||||
);
|
);
|
||||||
cudaStatus = cudaDeviceSynchronize();
|
cudaStatus = cudaDeviceSynchronize();
|
||||||
|
|||||||
@@ -12,9 +12,9 @@ class Conv2dTest : public ::testing::Test {
|
|||||||
int inputChannels,
|
int inputChannels,
|
||||||
int kernelSize,
|
int kernelSize,
|
||||||
int stride,
|
int stride,
|
||||||
Padding padding,
|
Layers::Padding padding,
|
||||||
int numFilters,
|
int numFilters,
|
||||||
Activation activation,
|
Layers::Activation activation,
|
||||||
std::vector<float>& input,
|
std::vector<float>& input,
|
||||||
float* kernels,
|
float* kernels,
|
||||||
float*& d_input,
|
float*& d_input,
|
||||||
@@ -65,9 +65,9 @@ TEST_F(Conv2dTest, SimpleTest) {
|
|||||||
int inputChannels = 1;
|
int inputChannels = 1;
|
||||||
int kernelSize = 2;
|
int kernelSize = 2;
|
||||||
int stride = 1;
|
int stride = 1;
|
||||||
Padding padding = VALID;
|
Layers::Padding padding = Layers::Padding::VALID;
|
||||||
int numFilters = 1;
|
int numFilters = 1;
|
||||||
Activation activation = LINEAR;
|
Layers::Activation activation = Layers::Activation::NONE;
|
||||||
|
|
||||||
std::vector<float> input = {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f,
|
std::vector<float> input = {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f,
|
||||||
7.0f, 8.0f, 9.0f, 10.0f, 11.0f, 12.0f,
|
7.0f, 8.0f, 9.0f, 10.0f, 11.0f, 12.0f,
|
||||||
@@ -114,9 +114,9 @@ TEST_F(Conv2dTest, ComplexTest) {
|
|||||||
int inputChannels = 3;
|
int inputChannels = 3;
|
||||||
int kernelSize = 3;
|
int kernelSize = 3;
|
||||||
int stride = 1;
|
int stride = 1;
|
||||||
Padding padding = SAME;
|
Layers::Padding padding = Layers::Padding::SAME;
|
||||||
int numFilters = 2;
|
int numFilters = 2;
|
||||||
Activation activation = LINEAR;
|
Layers::Activation activation = Layers::Activation::NONE;
|
||||||
|
|
||||||
// clang-format off
|
// clang-format off
|
||||||
std::vector<float> input = {
|
std::vector<float> input = {
|
||||||
|
|||||||
@@ -16,7 +16,7 @@ class DenseLayerTest : public ::testing::Test {
|
|||||||
float* biases,
|
float* biases,
|
||||||
float*& d_input,
|
float*& d_input,
|
||||||
float*& d_output,
|
float*& d_output,
|
||||||
Activation activation
|
Layers::Activation activation
|
||||||
) {
|
) {
|
||||||
// Create Dense layer
|
// Create Dense layer
|
||||||
Layers::Dense denseLayer(inputSize, outputSize, activation);
|
Layers::Dense denseLayer(inputSize, outputSize, activation);
|
||||||
@@ -57,7 +57,9 @@ TEST_F(DenseLayerTest, Init) {
|
|||||||
int inputSize = i;
|
int inputSize = i;
|
||||||
int outputSize = j;
|
int outputSize = j;
|
||||||
|
|
||||||
Layers::Dense denseLayer(inputSize, outputSize, SIGMOID);
|
Layers::Dense denseLayer(
|
||||||
|
inputSize, outputSize, Layers::Activation::SIGMOID
|
||||||
|
);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@@ -76,7 +78,9 @@ TEST_F(DenseLayerTest, setWeights) {
|
|||||||
};
|
};
|
||||||
// clang-format on
|
// clang-format on
|
||||||
|
|
||||||
Layers::Dense denseLayer(inputSize, outputSize, SIGMOID);
|
Layers::Dense denseLayer(
|
||||||
|
inputSize, outputSize, Layers::Activation::SIGMOID
|
||||||
|
);
|
||||||
|
|
||||||
denseLayer.setWeights(weights.data());
|
denseLayer.setWeights(weights.data());
|
||||||
}
|
}
|
||||||
@@ -102,7 +106,7 @@ TEST_F(DenseLayerTest, ForwardUnitWeightMatrixLinear) {
|
|||||||
|
|
||||||
Layers::Dense denseLayer = commonTestSetup(
|
Layers::Dense denseLayer = commonTestSetup(
|
||||||
inputSize, outputSize, input, weights.data(), biases.data(), d_input,
|
inputSize, outputSize, input, weights.data(), biases.data(), d_input,
|
||||||
d_output, LINEAR
|
d_output, Layers::Activation::NONE
|
||||||
);
|
);
|
||||||
denseLayer.forward(d_input, d_output);
|
denseLayer.forward(d_input, d_output);
|
||||||
|
|
||||||
@@ -142,7 +146,8 @@ TEST_F(DenseLayerTest, ForwardRandomWeightMatrixRelu) {
|
|||||||
float* d_output;
|
float* d_output;
|
||||||
|
|
||||||
Layers::Dense denseLayer = commonTestSetup(
|
Layers::Dense denseLayer = commonTestSetup(
|
||||||
inputSize, outputSize, input, weights.data(), biases.data(), d_input, d_output, RELU
|
inputSize, outputSize, input, weights.data(), biases.data(), d_input,
|
||||||
|
d_output, Layers::Activation::RELU
|
||||||
);
|
);
|
||||||
|
|
||||||
denseLayer.forward(d_input, d_output);
|
denseLayer.forward(d_input, d_output);
|
||||||
@@ -186,8 +191,8 @@ TEST_F(DenseLayerTest, ForwardRandomWeightMatrixSigmoid) {
|
|||||||
float* d_output;
|
float* d_output;
|
||||||
|
|
||||||
Layers::Dense denseLayer = commonTestSetup(
|
Layers::Dense denseLayer = commonTestSetup(
|
||||||
inputSize, outputSize, input, weights.data(), biases.data(), d_input, d_output,
|
inputSize, outputSize, input, weights.data(), biases.data(), d_input,
|
||||||
SIGMOID
|
d_output, Layers::Activation::SIGMOID
|
||||||
);
|
);
|
||||||
|
|
||||||
denseLayer.forward(d_input, d_output);
|
denseLayer.forward(d_input, d_output);
|
||||||
|
|||||||
Reference in New Issue
Block a user