mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-05 17:34:21 +00:00
206 lines
6.5 KiB
Plaintext
206 lines
6.5 KiB
Plaintext
#include <cuda_runtime_api.h>
|
|
#include <gtest/gtest.h>
|
|
|
|
#include <iostream>
|
|
|
|
#include "conv2d.cuh"
|
|
|
|
class Conv2dTest : public ::testing::Test {
|
|
protected:
|
|
Layers::Conv2d commonTestSetup(
|
|
int inputSize,
|
|
int inputChannels,
|
|
int kernelSize,
|
|
int stride,
|
|
Layers::Padding padding,
|
|
int numFilters,
|
|
Layers::Activation activation,
|
|
std::vector<float>& input,
|
|
float* kernels,
|
|
float*& d_input,
|
|
float*& d_output
|
|
) {
|
|
// Create Conv2d layer
|
|
Layers::Conv2d conv2d(
|
|
inputSize, inputChannels, kernelSize, stride, padding, numFilters,
|
|
activation
|
|
);
|
|
|
|
conv2d.setWeights(kernels);
|
|
|
|
// Allocate device memory
|
|
cudaStatus = cudaMalloc(
|
|
(void**)&d_input,
|
|
sizeof(float) * inputSize * inputSize * inputChannels
|
|
);
|
|
EXPECT_EQ(cudaStatus, cudaSuccess);
|
|
|
|
cudaStatus = cudaMalloc(
|
|
(void**)&d_output,
|
|
sizeof(float) * conv2d.outputSize * conv2d.outputSize * numFilters
|
|
);
|
|
EXPECT_EQ(cudaStatus, cudaSuccess);
|
|
|
|
// // Copy input to device
|
|
cudaStatus = cudaMemcpy(
|
|
d_input, input.data(), sizeof(float) * input.size(),
|
|
cudaMemcpyHostToDevice
|
|
);
|
|
EXPECT_EQ(cudaStatus, cudaSuccess);
|
|
|
|
return conv2d;
|
|
}
|
|
|
|
void commonTestTeardown(float* d_input, float* d_output) {
|
|
// Free device memory
|
|
cudaFree(d_input);
|
|
cudaFree(d_output);
|
|
}
|
|
|
|
cudaError_t cudaStatus;
|
|
};
|
|
|
|
TEST_F(Conv2dTest, SimpleTest) {
|
|
int inputSize = 4;
|
|
int inputChannels = 1;
|
|
int kernelSize = 2;
|
|
int stride = 1;
|
|
Layers::Padding padding = Layers::Padding::VALID;
|
|
int numFilters = 1;
|
|
Layers::Activation activation = Layers::Activation::NONE;
|
|
|
|
std::vector<float> input = {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f,
|
|
7.0f, 8.0f, 9.0f, 10.0f, 11.0f, 12.0f,
|
|
13.0f, 14.0f, 15.0f, 16.0f};
|
|
std::vector<float> kernels = {
|
|
1.0f,
|
|
2.0f,
|
|
3.0f,
|
|
4.0f,
|
|
};
|
|
|
|
float* d_input;
|
|
float* d_output;
|
|
|
|
Layers::Conv2d conv2d = commonTestSetup(
|
|
inputSize, inputChannels, kernelSize, stride, padding, numFilters,
|
|
activation, input, kernels.data(), d_input, d_output
|
|
);
|
|
|
|
int outputSize = (inputSize - kernelSize) / stride + 1;
|
|
EXPECT_EQ(outputSize, conv2d.outputSize);
|
|
|
|
conv2d.forward(d_input, d_output);
|
|
|
|
std::vector<float> expected = {44.0f, 54.0f, 64.0f, 84.0f, 94.0f,
|
|
104.0f, 124.0f, 134.0f, 144.0f};
|
|
std::vector<float> output(outputSize * outputSize * numFilters);
|
|
|
|
cudaStatus = cudaMemcpy(
|
|
output.data(), d_output, sizeof(float) * output.size(),
|
|
cudaMemcpyDeviceToHost
|
|
);
|
|
EXPECT_EQ(cudaStatus, cudaSuccess);
|
|
|
|
for (int i = 0; i < output.size(); ++i) {
|
|
EXPECT_FLOAT_EQ(expected[i], output[i]);
|
|
}
|
|
|
|
commonTestTeardown(d_input, d_output);
|
|
}
|
|
|
|
TEST_F(Conv2dTest, ComplexTest) {
|
|
int inputSize = 5;
|
|
int inputChannels = 3;
|
|
int kernelSize = 3;
|
|
int stride = 1;
|
|
Layers::Padding padding = Layers::Padding::SAME;
|
|
int numFilters = 2;
|
|
Layers::Activation activation = Layers::Activation::NONE;
|
|
|
|
// clang-format off
|
|
std::vector<float> input = {
|
|
// Channel 1
|
|
0.823f, 0.217f, 0.435f, 0.981f, 0.742f,
|
|
0.109f, 0.518f, 0.374f, 0.681f, 0.147f,
|
|
0.956f, 0.729f, 0.654f, 0.087f, 0.392f,
|
|
0.784f, 0.921f, 0.543f, 0.231f, 0.816f,
|
|
0.472f, 0.614f, 0.102f, 0.987f, 0.398f,
|
|
// Channel 2
|
|
0.051f, 0.756f, 0.841f, 0.293f, 0.128f,
|
|
0.417f, 0.632f, 0.095f, 0.184f, 0.529f,
|
|
0.871f, 0.958f, 0.213f, 0.347f, 0.725f,
|
|
0.461f, 0.012f, 0.278f, 0.195f, 0.649f,
|
|
0.853f, 0.707f, 0.988f, 0.988f, 0.322f,
|
|
// Channel 3
|
|
0.345f, 0.123f, 0.789f, 0.123f, 0.456f,
|
|
0.456f, 0.789f, 0.123f, 0.345f, 0.123f,
|
|
0.789f, 0.123f, 0.345f, 0.123f, 0.456f,
|
|
0.123f, 0.345f, 0.123f, 0.789f, 0.123f,
|
|
0.345f, 0.123f, 0.789f, 0.123f, 0.456f
|
|
};
|
|
|
|
std::vector<float> kernels = {
|
|
// Filter 1, Channel 1
|
|
0.128f, 0.754f, 0.987f,
|
|
0.321f, 0.412f, 0.635f,
|
|
0.298f, 0.017f, 0.845f,
|
|
// Filter 1, Channel 2
|
|
0.514f, 0.729f, 0.952f,
|
|
0.684f, 0.378f, 0.159f,
|
|
0.823f, 0.547f, 0.216f,
|
|
// Filter 1, Channel 3
|
|
0.983f, 0.231f, 0.456f,
|
|
0.178f, 0.654f, 0.821f,
|
|
0.345f, 0.987f, 0.123f,
|
|
// Filter 2, Channel 1
|
|
0.789f, 0.543f, 0.210f,
|
|
0.012f, 0.371f, 0.638f,
|
|
0.456f, 0.198f, 0.907f,
|
|
// Filter 2, Channel 2
|
|
0.101f, 0.432f, 0.759f,
|
|
0.234f, 0.567f, 0.890f,
|
|
0.543f, 0.876f, 0.219f,
|
|
// Filter 2, Channel 3
|
|
0.345f, 0.678f, 0.011f,
|
|
0.678f, 0.011f, 0.345f,
|
|
0.011f, 0.345f, 0.678f
|
|
};
|
|
// clang-format on
|
|
|
|
float* d_input;
|
|
float* d_output;
|
|
|
|
Layers::Conv2d conv2d = commonTestSetup(
|
|
inputSize, inputChannels, kernelSize, stride, padding, numFilters,
|
|
activation, input, kernels.data(), d_input, d_output
|
|
);
|
|
|
|
EXPECT_EQ(inputSize, conv2d.outputSize);
|
|
|
|
conv2d.forward(d_input, d_output);
|
|
|
|
std::vector<float> output(
|
|
conv2d.outputSize * conv2d.outputSize * numFilters
|
|
);
|
|
cudaMemcpy(
|
|
output.data(), d_output,
|
|
sizeof(float) * conv2d.outputSize * conv2d.outputSize * numFilters,
|
|
cudaMemcpyDeviceToHost
|
|
);
|
|
|
|
// Generated by tools/generate_conv2d_test.py
|
|
std::vector<float> expected = {
|
|
2.29426f, 3.89173f, 4.17634f, 3.25501f, 2.07618f, 5.41483f, 7.09971f,
|
|
6.39811f, 5.71432f, 3.10928f, 5.12973f, 6.29638f, 5.26962f, 5.21997f,
|
|
3.05852f, 6.17517f, 7.19311f, 6.69771f, 6.2142f, 4.03242f, 3.3792f,
|
|
4.36444f, 4.396f, 4.69905f, 3.62061f, 2.87914f, 3.71743f, 3.51854f,
|
|
2.98413f, 1.46579f, 4.94951f, 6.18983f, 4.98187f, 4.38372f, 3.35386f,
|
|
5.0364f, 5.3756f, 4.05993f, 4.89299f, 2.78625f, 5.33763f, 5.80899f,
|
|
5.89785f, 5.51095f, 3.74287f, 2.64053f, 4.05895f, 3.96482f, 4.30177f,
|
|
1.94269f
|
|
};
|
|
for (int i = 0; i < output.size(); i++) {
|
|
EXPECT_NEAR(output[i], expected[i], 0.0001f);
|
|
}
|
|
} |