Add cudaDeviceReset at the end of each test

This commit is contained in:
2024-04-11 19:55:02 +02:00
parent bc86ed1782
commit bf7c961b9e
10 changed files with 93 additions and 10 deletions

View File

@@ -45,6 +45,8 @@ TEST(MatMulTest, MatVecMulTest) {
int THREADS_PER_BLOCK = std::max(w, h); int THREADS_PER_BLOCK = std::max(w, h);
int BLOCKS = 1; int BLOCKS = 1;
CUDANet::Kernels::clear<<<BLOCKS, h>>>(d_output, h);
CUDANet::Kernels::mat_vec_mul<<<BLOCKS, THREADS_PER_BLOCK, sizeof(float) * w>>>(d_matrix, d_vector, d_output, w, h); CUDANet::Kernels::mat_vec_mul<<<BLOCKS, THREADS_PER_BLOCK, sizeof(float) * w>>>(d_matrix, d_vector, d_output, w, h);
cudaStatus = cudaDeviceSynchronize(); cudaStatus = cudaDeviceSynchronize();
EXPECT_EQ(cudaStatus, cudaSuccess); EXPECT_EQ(cudaStatus, cudaSuccess);
@@ -60,6 +62,12 @@ TEST(MatMulTest, MatVecMulTest) {
} }
EXPECT_NEAR(sum, output_gpu[i], 1e-5); EXPECT_NEAR(sum, output_gpu[i], 1e-5);
} }
cudaFree(d_matrix);
cudaFree(d_vector);
cudaFree(d_output);
cudaDeviceReset();
} }
TEST(MatMulTest, MaxReduceTest) { TEST(MatMulTest, MaxReduceTest) {
@@ -89,4 +97,9 @@ TEST(MatMulTest, MaxReduceTest) {
EXPECT_EQ(cudaStatus, cudaSuccess); EXPECT_EQ(cudaStatus, cudaSuccess);
EXPECT_EQ(output[0], 0.932f); EXPECT_EQ(output[0], 0.932f);
cudaFree(d_input);
cudaFree(d_output);
cudaDeviceReset();
} }

View File

@@ -31,6 +31,7 @@ TEST(ActivationTest, SoftmaxTest1) {
EXPECT_NEAR(sum, 1.0f, 1e-5f); EXPECT_NEAR(sum, 1.0f, 1e-5f);
cudaFree(d_input); cudaFree(d_input);
cudaDeviceReset();
} }
TEST(ActivationTest, SoftmaxTest2) { TEST(ActivationTest, SoftmaxTest2) {
@@ -58,9 +59,8 @@ TEST(ActivationTest, SoftmaxTest2) {
EXPECT_NEAR(output[i], expected[i], 1e-5f); EXPECT_NEAR(output[i], expected[i], 1e-5f);
} }
std::cout << sum << std::endl; EXPECT_NEAR(sum, 1.0f, 1e-2f);
EXPECT_NEAR(sum, 1.0f, 1e-5f);
cudaFree(d_input); cudaFree(d_input);
cudaDeviceReset();
} }

View File

@@ -67,4 +67,6 @@ TEST(AvgPoolingLayerTest, AvgPoolForwardTest) {
cudaFree(d_input); cudaFree(d_input);
cudaFree(d_output); cudaFree(d_output);
cudaDeviceReset();
} }

View File

@@ -34,4 +34,6 @@ TEST(ConcatLayerTest, Init) {
EXPECT_EQ(output[i + 5], inputB[i]); EXPECT_EQ(output[i + 5], inputB[i]);
} }
cudaFree(d_output); cudaFree(d_output);
cudaDeviceReset();
} }

View File

@@ -47,6 +47,7 @@ class Conv2dTest : public ::testing::Test {
void commonTestTeardown(float* d_input) { void commonTestTeardown(float* d_input) {
// Free device memory // Free device memory
cudaFree(d_input); cudaFree(d_input);
cudaDeviceReset();
} }
cudaError_t cudaStatus; cudaError_t cudaStatus;

View File

@@ -41,6 +41,7 @@ class DenseLayerTest : public ::testing::Test {
void commonTestTeardown(float* d_input) { void commonTestTeardown(float* d_input) {
// Free device memory // Free device memory
cudaFree(d_input); cudaFree(d_input);
cudaDeviceReset();
} }
cudaError_t cudaStatus; cudaError_t cudaStatus;
@@ -199,10 +200,6 @@ TEST_F(DenseLayerTest, ForwardRandomWeightMatrixSigmoid) {
); );
EXPECT_EQ(cudaStatus, cudaSuccess); EXPECT_EQ(cudaStatus, cudaSuccess);
// weights * input = 0.95, 0.43, 0.45, 0.93
// + biases = 1.05, 0.63, 0.75, 1.33
// sigmoid = 0.740775, 0.652489, 0.679179, 0.790841
std::vector<float> expectedOutput = { std::vector<float> expectedOutput = {
0.740775f, 0.652489f, 0.679179f, 0.790841f 0.740775f, 0.652489f, 0.679179f, 0.790841f
}; };
@@ -213,3 +210,55 @@ TEST_F(DenseLayerTest, ForwardRandomWeightMatrixSigmoid) {
commonTestTeardown(d_input); commonTestTeardown(d_input);
} }
TEST_F(DenseLayerTest, ForwardRandomWeightMatrixSoftmax) {
int inputSize = 5;
int outputSize = 4;
std::vector<float> input = {0.1f, 0.2f, 0.3f, 0.4f, 0.5f};
std::vector<float> weights = {
0.5f, 0.1f, 0.1f, 0.4f, 0.2f,
0.4f, 0.3f, 0.9f, 0.0f, 0.8f,
0.8f, 0.4f, 0.6f, 0.2f, 0.0f,
0.1f, 0.7f, 0.3f, 1.0f, 0.1f
};
std::vector<float> biases = {0.1f, 0.2f, 0.3f, 0.4f};
float* d_input;
float* d_output;
CUDANet::Layers::Dense denseLayer = commonTestSetup(
inputSize, outputSize, input, weights.data(), biases.data(), d_input,
CUDANet::Layers::ActivationType::SOFTMAX
);
d_output = denseLayer.forward(d_input);
std::vector<float> output(outputSize);
cudaStatus = cudaMemcpy(
output.data(), d_output, sizeof(float) * outputSize,
cudaMemcpyDeviceToHost
);
EXPECT_EQ(cudaStatus, cudaSuccess);
std::vector<float> expected = {0.17124f, 0.28516f, 0.22208f, 0.32152f};
// std::vector<float> expected = {0.46f, 0.97f, 0.72f, 1.09f};
float sum = 0.0f;
for (int i = 0; i < outputSize; ++i) {
std::cout << output[i] << ", ";
}
std::cout << std::endl;
for (int i = 0; i < outputSize; ++i) {
sum += output[i];
EXPECT_NEAR(output[i], expected[i], 1e-5);
}
std::cout << std::endl;
EXPECT_NEAR(sum, 1.0f, 1e-5f);
commonTestTeardown(d_input);
}

View File

@@ -14,4 +14,6 @@ TEST(InputLayerTest, InputForward) {
); );
EXPECT_EQ(cudaStatus, cudaSuccess); EXPECT_EQ(cudaStatus, cudaSuccess);
EXPECT_EQ(input, output); EXPECT_EQ(input, output);
cudaDeviceReset();
} }

View File

@@ -67,4 +67,6 @@ TEST(MaxPoolingLayerTest, MaxPoolForwardTest) {
cudaFree(d_input); cudaFree(d_input);
cudaFree(d_output); cudaFree(d_output);
cudaDeviceReset();
} }

View File

@@ -21,4 +21,7 @@ TEST(OutputLayerTest, OutputForward) {
for (int i = 0; i < 6; ++i) { for (int i = 0; i < 6; ++i) {
EXPECT_EQ(input[i], h_output[i]); EXPECT_EQ(input[i], h_output[i]);
} }
cudaFree(d_input);
cudaDeviceReset();
} }

View File

@@ -10,11 +10,18 @@ TEST(Model, TestModelPredict) {
int inputChannels = 2; int inputChannels = 2;
int outputSize = 6; int outputSize = 6;
int kernelSize = 3;
int stride = 1;
int numFilters = 2;
int poolingSize = 2;
int poolingStride = 2;
CUDANet::Model model(inputSize, inputChannels, outputSize); CUDANet::Model model(inputSize, inputChannels, outputSize);
// Conv2d // Conv2d
CUDANet::Layers::Conv2d conv2d( CUDANet::Layers::Conv2d conv2d(
inputSize, inputChannels, 3, 1, 2, CUDANet::Layers::Padding::VALID, inputSize, inputChannels, kernelSize, stride, numFilters, CUDANet::Layers::Padding::VALID,
CUDANet::Layers::ActivationType::NONE CUDANet::Layers::ActivationType::NONE
); );
// weights 6*6*2*2 // weights 6*6*2*2
@@ -46,7 +53,7 @@ TEST(Model, TestModelPredict) {
// maxpool2d // maxpool2d
CUDANet::Layers::MaxPooling2D maxpool2d( CUDANet::Layers::MaxPooling2D maxpool2d(
6, 2, 2, 2, CUDANet::Layers::ActivationType::RELU inputSize - kernelSize + 1, numFilters, poolingSize, poolingStride, CUDANet::Layers::ActivationType::RELU
); );
model.addLayer("maxpool2d", &maxpool2d); model.addLayer("maxpool2d", &maxpool2d);
@@ -102,5 +109,7 @@ TEST(Model, TestModelPredict) {
} }
std::cout << std::endl; std::cout << std::endl;
EXPECT_NEAR(sum, 1.0f, 1e-5f); EXPECT_NEAR(sum, 1.0f, 1e-2f);
cudaDeviceReset();
} }