Files
CUDANet/test/layers/test_dense.cu

264 lines
7.2 KiB
Plaintext

#include <cuda_runtime_api.h>
#include <gtest/gtest.h>
#include <iostream>
#include "activation.cuh"
#include "dense.cuh"
class DenseLayerTest : public ::testing::Test {
protected:
CUDANet::Layers::Dense commonTestSetup(
int inputSize,
int outputSize,
std::vector<float>& input,
float* weights,
float* biases,
float*& d_input,
CUDANet::Layers::ActivationType activationType
) {
// Create Dense layer
CUDANet::Layers::Dense denseLayer(inputSize, outputSize, activationType);
// Set weights and biases
denseLayer.setWeights(weights);
denseLayer.setBiases(biases);
// Allocate device memory
cudaStatus = cudaMalloc((void**)&d_input, sizeof(float) * input.size());
EXPECT_EQ(cudaStatus, cudaSuccess);
// Copy input to device
cudaStatus = cudaMemcpy(
d_input, input.data(), sizeof(float) * input.size(),
cudaMemcpyHostToDevice
);
EXPECT_EQ(cudaStatus, cudaSuccess);
return denseLayer;
}
void commonTestTeardown(float* d_input) {
// Free device memory
cudaFree(d_input);
cudaDeviceReset();
}
cudaError_t cudaStatus;
};
TEST_F(DenseLayerTest, Init) {
for (int i = 1; i < 100; ++i) {
for (int j = 1; j < 100; ++j) {
int inputSize = i;
int outputSize = j;
CUDANet::Layers::Dense denseLayer(
inputSize, outputSize, CUDANet::Layers::ActivationType::SIGMOID
);
}
}
}
TEST_F(DenseLayerTest, setWeights) {
int inputSize = 4;
int outputSize = 5;
// clang-format off
std::vector<float> weights = {
0.5f, 1.0f, 0.2f, 0.8f,
1.2f, 0.3f, 1.5f, 0.4f,
0.7f, 1.8f, 0.9f, 0.1f,
0.4f, 2.0f, 0.6f, 1.1f,
1.3f, 0.5f, 0.0f, 1.7f
};
// clang-format on
CUDANet::Layers::Dense denseLayer(
inputSize, outputSize, CUDANet::Layers::ActivationType::SIGMOID
);
denseLayer.setWeights(weights.data());
}
TEST_F(DenseLayerTest, ForwardUnitWeightMatrixLinear) {
int inputSize = 3;
int outputSize = 3;
std::vector<float> input = {1.0f, 2.0f, 3.0f};
std::vector<float> weights(outputSize * inputSize, 0.0f);
for (int i = 0; i < inputSize; ++i) {
for (int j = 0; j < outputSize; ++j) {
if (i == j) {
weights[i * outputSize + j] = 1.0f;
}
}
}
std::vector<float> biases(outputSize, 1.0f);
float* d_input;
float* d_output;
CUDANet::Layers::Dense denseLayer = commonTestSetup(
inputSize, outputSize, input, weights.data(), biases.data(), d_input,
CUDANet::Layers::ActivationType::NONE
);
d_output = denseLayer.forward(d_input);
std::vector<float> output(outputSize);
cudaStatus = cudaMemcpy(
output.data(), d_output, sizeof(float) * outputSize,
cudaMemcpyDeviceToHost
);
EXPECT_EQ(cudaStatus, cudaSuccess);
// Check if the output is a zero vector
EXPECT_FLOAT_EQ(output[0], 2.0f);
EXPECT_FLOAT_EQ(output[1], 3.0f);
EXPECT_FLOAT_EQ(output[2], 4.0f);
commonTestTeardown(d_input);
}
TEST_F(DenseLayerTest, ForwardRandomWeightMatrixRelu) {
int inputSize = 5;
int outputSize = 4;
std::vector<float> input = {1.0f, 2.0f, 3.0f, 4.0f, -5.0f};
// clang-format off
std::vector<float> weights = {
0.5f, 1.2f, 0.7f, 0.4f,
1.3f, 1.0f, 0.3f, 1.8f,
2.0f, 0.5f, 0.2f, 1.5f,
0.9f, 0.6f, 0.0f, 0.8f,
0.4f, 0.1f, 1.1f, 1.7f
};
std::vector<float> biases = {0.2f, 0.5f, 0.7f, -1.1f};
// clang-format on
float* d_input;
float* d_output;
CUDANet::Layers::Dense denseLayer = commonTestSetup(
inputSize, outputSize, input, weights.data(), biases.data(), d_input,
CUDANet::Layers::ActivationType::RELU
);
d_output = denseLayer.forward(d_input);
std::vector<float> output(outputSize);
cudaStatus = cudaMemcpy(
output.data(), d_output, sizeof(float) * outputSize,
cudaMemcpyDeviceToHost
);
EXPECT_EQ(cudaStatus, cudaSuccess);
// weights * inputs = 0.1, 12.5, 8.3, -2.2
// + biases = 0.3, 13, 9, -3.3
std::vector<float> expectedOutput = {0.3f, 13.0f, 9.0f, 0.0f};
for (int i = 0; i < outputSize; ++i) {
EXPECT_NEAR(
output[i], expectedOutput[i], 1e-4
); // Allow small tolerance for floating-point comparison
}
commonTestTeardown(d_input);
}
TEST_F(DenseLayerTest, ForwardRandomWeightMatrixSigmoid) {
int inputSize = 5;
int outputSize = 4;
// clang-format off
std::vector<float> input = {0.1f, 0.2f, 0.3f, 0.4f, 0.5f};
std::vector<float> weights = {
0.8f, 0.7f, 0.7f, 0.3f, 0.8f,
0.1f, 0.4f, 0.8f, 0.0f, 0.2f,
0.2f, 0.5f, 0.7f, 0.3f, 0.0f,
0.1f, 0.7f, 0.6f, 1.0f, 0.4f
};
std::vector<float> biases = {0.1f, 0.2f, 0.3f, 0.4f};
// clang-format on
float* d_input;
float* d_output;
CUDANet::Layers::Dense denseLayer = commonTestSetup(
inputSize, outputSize, input, weights.data(), biases.data(), d_input,
CUDANet::Layers::ActivationType::SIGMOID
);
d_output = denseLayer.forward(d_input);
std::vector<float> output(outputSize);
cudaStatus = cudaMemcpy(
output.data(), d_output, sizeof(float) * outputSize,
cudaMemcpyDeviceToHost
);
EXPECT_EQ(cudaStatus, cudaSuccess);
std::vector<float> expectedOutput = {
0.740775f, 0.652489f, 0.679179f, 0.790841f
};
for (int i = 0; i < outputSize; ++i) {
EXPECT_NEAR(output[i], expectedOutput[i], 1e-5);
}
commonTestTeardown(d_input);
}
TEST_F(DenseLayerTest, ForwardRandomWeightMatrixSoftmax) {
int inputSize = 5;
int outputSize = 4;
std::vector<float> input = {0.1f, 0.2f, 0.3f, 0.4f, 0.5f};
std::vector<float> weights = {
0.5f, 0.1f, 0.1f, 0.4f, 0.2f,
0.4f, 0.3f, 0.9f, 0.0f, 0.8f,
0.8f, 0.4f, 0.6f, 0.2f, 0.0f,
0.1f, 0.7f, 0.3f, 1.0f, 0.1f
};
std::vector<float> biases = {0.1f, 0.2f, 0.3f, 0.4f};
float* d_input;
float* d_output;
CUDANet::Layers::Dense denseLayer = commonTestSetup(
inputSize, outputSize, input, weights.data(), biases.data(), d_input,
CUDANet::Layers::ActivationType::SOFTMAX
);
d_output = denseLayer.forward(d_input);
std::vector<float> output(outputSize);
cudaStatus = cudaMemcpy(
output.data(), d_output, sizeof(float) * outputSize,
cudaMemcpyDeviceToHost
);
EXPECT_EQ(cudaStatus, cudaSuccess);
std::vector<float> expected = {0.17124f, 0.28516f, 0.22208f, 0.32152f};
// std::vector<float> expected = {0.46f, 0.97f, 0.72f, 1.09f};
float sum = 0.0f;
for (int i = 0; i < outputSize; ++i) {
std::cout << output[i] << ", ";
}
std::cout << std::endl;
for (int i = 0; i < outputSize; ++i) {
sum += output[i];
EXPECT_NEAR(output[i], expected[i], 1e-5);
}
std::cout << std::endl;
EXPECT_NEAR(sum, 1.0f, 1e-5f);
commonTestTeardown(d_input);
}