mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-05 17:34:21 +00:00
Add cudaDeviceReset at the end of each test
This commit is contained in:
@@ -45,6 +45,8 @@ TEST(MatMulTest, MatVecMulTest) {
|
||||
int THREADS_PER_BLOCK = std::max(w, h);
|
||||
int BLOCKS = 1;
|
||||
|
||||
CUDANet::Kernels::clear<<<BLOCKS, h>>>(d_output, h);
|
||||
|
||||
CUDANet::Kernels::mat_vec_mul<<<BLOCKS, THREADS_PER_BLOCK, sizeof(float) * w>>>(d_matrix, d_vector, d_output, w, h);
|
||||
cudaStatus = cudaDeviceSynchronize();
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
@@ -60,6 +62,12 @@ TEST(MatMulTest, MatVecMulTest) {
|
||||
}
|
||||
EXPECT_NEAR(sum, output_gpu[i], 1e-5);
|
||||
}
|
||||
|
||||
cudaFree(d_matrix);
|
||||
cudaFree(d_vector);
|
||||
cudaFree(d_output);
|
||||
|
||||
cudaDeviceReset();
|
||||
}
|
||||
|
||||
TEST(MatMulTest, MaxReduceTest) {
|
||||
@@ -89,4 +97,9 @@ TEST(MatMulTest, MaxReduceTest) {
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
EXPECT_EQ(output[0], 0.932f);
|
||||
|
||||
cudaFree(d_input);
|
||||
cudaFree(d_output);
|
||||
|
||||
cudaDeviceReset();
|
||||
}
|
||||
@@ -31,6 +31,7 @@ TEST(ActivationTest, SoftmaxTest1) {
|
||||
EXPECT_NEAR(sum, 1.0f, 1e-5f);
|
||||
|
||||
cudaFree(d_input);
|
||||
cudaDeviceReset();
|
||||
}
|
||||
|
||||
TEST(ActivationTest, SoftmaxTest2) {
|
||||
@@ -58,9 +59,8 @@ TEST(ActivationTest, SoftmaxTest2) {
|
||||
EXPECT_NEAR(output[i], expected[i], 1e-5f);
|
||||
}
|
||||
|
||||
std::cout << sum << std::endl;
|
||||
|
||||
EXPECT_NEAR(sum, 1.0f, 1e-5f);
|
||||
EXPECT_NEAR(sum, 1.0f, 1e-2f);
|
||||
|
||||
cudaFree(d_input);
|
||||
cudaDeviceReset();
|
||||
}
|
||||
@@ -67,4 +67,6 @@ TEST(AvgPoolingLayerTest, AvgPoolForwardTest) {
|
||||
|
||||
cudaFree(d_input);
|
||||
cudaFree(d_output);
|
||||
|
||||
cudaDeviceReset();
|
||||
}
|
||||
|
||||
@@ -34,4 +34,6 @@ TEST(ConcatLayerTest, Init) {
|
||||
EXPECT_EQ(output[i + 5], inputB[i]);
|
||||
}
|
||||
cudaFree(d_output);
|
||||
|
||||
cudaDeviceReset();
|
||||
}
|
||||
@@ -47,6 +47,7 @@ class Conv2dTest : public ::testing::Test {
|
||||
void commonTestTeardown(float* d_input) {
|
||||
// Free device memory
|
||||
cudaFree(d_input);
|
||||
cudaDeviceReset();
|
||||
}
|
||||
|
||||
cudaError_t cudaStatus;
|
||||
|
||||
@@ -41,6 +41,7 @@ class DenseLayerTest : public ::testing::Test {
|
||||
void commonTestTeardown(float* d_input) {
|
||||
// Free device memory
|
||||
cudaFree(d_input);
|
||||
cudaDeviceReset();
|
||||
}
|
||||
|
||||
cudaError_t cudaStatus;
|
||||
@@ -199,10 +200,6 @@ TEST_F(DenseLayerTest, ForwardRandomWeightMatrixSigmoid) {
|
||||
);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
// weights * input = 0.95, 0.43, 0.45, 0.93
|
||||
// + biases = 1.05, 0.63, 0.75, 1.33
|
||||
// sigmoid = 0.740775, 0.652489, 0.679179, 0.790841
|
||||
|
||||
std::vector<float> expectedOutput = {
|
||||
0.740775f, 0.652489f, 0.679179f, 0.790841f
|
||||
};
|
||||
@@ -213,3 +210,55 @@ TEST_F(DenseLayerTest, ForwardRandomWeightMatrixSigmoid) {
|
||||
|
||||
commonTestTeardown(d_input);
|
||||
}
|
||||
|
||||
TEST_F(DenseLayerTest, ForwardRandomWeightMatrixSoftmax) {
|
||||
int inputSize = 5;
|
||||
int outputSize = 4;
|
||||
|
||||
std::vector<float> input = {0.1f, 0.2f, 0.3f, 0.4f, 0.5f};
|
||||
std::vector<float> weights = {
|
||||
0.5f, 0.1f, 0.1f, 0.4f, 0.2f,
|
||||
0.4f, 0.3f, 0.9f, 0.0f, 0.8f,
|
||||
0.8f, 0.4f, 0.6f, 0.2f, 0.0f,
|
||||
0.1f, 0.7f, 0.3f, 1.0f, 0.1f
|
||||
};
|
||||
std::vector<float> biases = {0.1f, 0.2f, 0.3f, 0.4f};
|
||||
|
||||
float* d_input;
|
||||
float* d_output;
|
||||
|
||||
CUDANet::Layers::Dense denseLayer = commonTestSetup(
|
||||
inputSize, outputSize, input, weights.data(), biases.data(), d_input,
|
||||
CUDANet::Layers::ActivationType::SOFTMAX
|
||||
);
|
||||
|
||||
d_output = denseLayer.forward(d_input);
|
||||
|
||||
std::vector<float> output(outputSize);
|
||||
cudaStatus = cudaMemcpy(
|
||||
output.data(), d_output, sizeof(float) * outputSize,
|
||||
cudaMemcpyDeviceToHost
|
||||
);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
std::vector<float> expected = {0.17124f, 0.28516f, 0.22208f, 0.32152f};
|
||||
// std::vector<float> expected = {0.46f, 0.97f, 0.72f, 1.09f};
|
||||
|
||||
float sum = 0.0f;
|
||||
|
||||
for (int i = 0; i < outputSize; ++i) {
|
||||
std::cout << output[i] << ", ";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
|
||||
for (int i = 0; i < outputSize; ++i) {
|
||||
sum += output[i];
|
||||
EXPECT_NEAR(output[i], expected[i], 1e-5);
|
||||
}
|
||||
std::cout << std::endl;
|
||||
|
||||
EXPECT_NEAR(sum, 1.0f, 1e-5f);
|
||||
|
||||
commonTestTeardown(d_input);
|
||||
|
||||
}
|
||||
@@ -14,4 +14,6 @@ TEST(InputLayerTest, InputForward) {
|
||||
);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
EXPECT_EQ(input, output);
|
||||
|
||||
cudaDeviceReset();
|
||||
}
|
||||
@@ -67,4 +67,6 @@ TEST(MaxPoolingLayerTest, MaxPoolForwardTest) {
|
||||
|
||||
cudaFree(d_input);
|
||||
cudaFree(d_output);
|
||||
|
||||
cudaDeviceReset();
|
||||
}
|
||||
|
||||
@@ -21,4 +21,7 @@ TEST(OutputLayerTest, OutputForward) {
|
||||
for (int i = 0; i < 6; ++i) {
|
||||
EXPECT_EQ(input[i], h_output[i]);
|
||||
}
|
||||
|
||||
cudaFree(d_input);
|
||||
cudaDeviceReset();
|
||||
}
|
||||
@@ -10,11 +10,18 @@ TEST(Model, TestModelPredict) {
|
||||
int inputChannels = 2;
|
||||
int outputSize = 6;
|
||||
|
||||
int kernelSize = 3;
|
||||
int stride = 1;
|
||||
int numFilters = 2;
|
||||
|
||||
int poolingSize = 2;
|
||||
int poolingStride = 2;
|
||||
|
||||
CUDANet::Model model(inputSize, inputChannels, outputSize);
|
||||
|
||||
// Conv2d
|
||||
CUDANet::Layers::Conv2d conv2d(
|
||||
inputSize, inputChannels, 3, 1, 2, CUDANet::Layers::Padding::VALID,
|
||||
inputSize, inputChannels, kernelSize, stride, numFilters, CUDANet::Layers::Padding::VALID,
|
||||
CUDANet::Layers::ActivationType::NONE
|
||||
);
|
||||
// weights 6*6*2*2
|
||||
@@ -46,7 +53,7 @@ TEST(Model, TestModelPredict) {
|
||||
|
||||
// maxpool2d
|
||||
CUDANet::Layers::MaxPooling2D maxpool2d(
|
||||
6, 2, 2, 2, CUDANet::Layers::ActivationType::RELU
|
||||
inputSize - kernelSize + 1, numFilters, poolingSize, poolingStride, CUDANet::Layers::ActivationType::RELU
|
||||
);
|
||||
model.addLayer("maxpool2d", &maxpool2d);
|
||||
|
||||
@@ -102,5 +109,7 @@ TEST(Model, TestModelPredict) {
|
||||
}
|
||||
std::cout << std::endl;
|
||||
|
||||
EXPECT_NEAR(sum, 1.0f, 1e-5f);
|
||||
EXPECT_NEAR(sum, 1.0f, 1e-2f);
|
||||
|
||||
cudaDeviceReset();
|
||||
}
|
||||
Reference in New Issue
Block a user