mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-06 09:44:28 +00:00
Refactor conv2d test
This commit is contained in:
@@ -5,14 +5,61 @@
|
||||
|
||||
#include "conv2d.cuh"
|
||||
|
||||
class Conv2dTest : public::testing::Test {
|
||||
class Conv2dTest : public ::testing::Test {
|
||||
protected:
|
||||
Layers::Conv2d commonTestSetup(
|
||||
int inputSize,
|
||||
int inputChannels,
|
||||
int kernelSize,
|
||||
int stride,
|
||||
std::string padding,
|
||||
int numFilters,
|
||||
Activation activation,
|
||||
std::vector<float>& input,
|
||||
std::vector<float>& kernels,
|
||||
float*& d_input,
|
||||
float*& d_output
|
||||
) {
|
||||
// Create Conv2d layer
|
||||
Layers::Conv2d conv2d(
|
||||
inputSize, inputChannels, kernelSize, stride, padding, numFilters,
|
||||
activation
|
||||
);
|
||||
|
||||
conv2d.setKernels(kernels);
|
||||
|
||||
// Allocate device memory
|
||||
cudaStatus = cudaMalloc(
|
||||
(void**)&d_input, sizeof(float) * inputSize * inputSize * inputChannels
|
||||
);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
cudaStatus = cudaMalloc(
|
||||
(void**)&d_output, sizeof(float) * conv2d.outputSize * conv2d.outputSize * numFilters
|
||||
);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
// // Copy input to device
|
||||
cudaStatus = cudaMemcpy(
|
||||
d_input, input.data(), sizeof(float) * input.size(),
|
||||
cudaMemcpyHostToDevice
|
||||
);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
|
||||
return conv2d;
|
||||
}
|
||||
|
||||
void commonTestTeardown(float* d_input, float* d_output) {
|
||||
// Free device memory
|
||||
cudaFree(d_input);
|
||||
cudaFree(d_output);
|
||||
}
|
||||
|
||||
cudaError_t cudaStatus;
|
||||
};
|
||||
|
||||
|
||||
TEST_F(Conv2dTest, SimpleExample) {
|
||||
|
||||
TEST_F(Conv2dTest, SimpleTest) {
|
||||
int inputSize = 4;
|
||||
int inputChannels = 1;
|
||||
int kernelSize = 2;
|
||||
@@ -21,54 +68,31 @@ TEST_F(Conv2dTest, SimpleExample) {
|
||||
int numFilters = 1;
|
||||
Activation activation = LINEAR;
|
||||
|
||||
Layers::Conv2d conv2d(
|
||||
inputSize,
|
||||
inputChannels,
|
||||
kernelSize,
|
||||
stride,
|
||||
padding,
|
||||
numFilters,
|
||||
activation
|
||||
);
|
||||
|
||||
int outputSize = (inputSize - kernelSize) / stride + 1;
|
||||
EXPECT_EQ(outputSize, conv2d.outputSize);
|
||||
|
||||
std::vector<float> input = {
|
||||
1.0f, 2.0f, 3.0f, 4.0f,
|
||||
5.0f, 6.0f, 7.0f, 8.0f,
|
||||
9.0f, 10.0f, 11.0f, 12.0f,
|
||||
13.0f, 14.0f, 15.0f, 16.0f
|
||||
};
|
||||
std::vector<float> input = {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f,
|
||||
7.0f, 8.0f, 9.0f, 10.0f, 11.0f, 12.0f,
|
||||
13.0f, 14.0f, 15.0f, 16.0f};
|
||||
std::vector<float> kernels = {
|
||||
1.0f, 2.0f, 3.0f, 4.0f,
|
||||
1.0f,
|
||||
2.0f,
|
||||
3.0f,
|
||||
4.0f,
|
||||
};
|
||||
|
||||
float* d_input;
|
||||
float* d_output;
|
||||
|
||||
conv2d.setKernels(kernels);
|
||||
|
||||
// Allocate device memory
|
||||
cudaStatus = cudaMalloc((void**)&d_input, sizeof(float) * inputSize * inputSize * inputChannels);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
cudaStatus = cudaMalloc((void**)&d_output, sizeof(float) * outputSize * outputSize * numFilters);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
// // Copy input to device
|
||||
cudaStatus = cudaMemcpy(
|
||||
d_input, input.data(), sizeof(float) * input.size(), cudaMemcpyHostToDevice
|
||||
Layers::Conv2d conv2d = commonTestSetup(
|
||||
inputSize, inputChannels, kernelSize, stride, padding, numFilters,
|
||||
activation, input, kernels, d_input, d_output
|
||||
);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
int outputSize = (inputSize - kernelSize) / stride + 1;
|
||||
EXPECT_EQ(outputSize, conv2d.outputSize);
|
||||
|
||||
conv2d.forward(d_input, d_output);
|
||||
|
||||
std::vector<float> expected = {
|
||||
44.0f, 54.0f, 64.0f,
|
||||
84.0f, 94.0f, 104.0f,
|
||||
124.0f, 134.0f, 144.0f
|
||||
};
|
||||
std::vector<float> expected = {44.0f, 54.0f, 64.0f, 84.0f, 94.0f,
|
||||
104.0f, 124.0f, 134.0f, 144.0f};
|
||||
std::vector<float> output(outputSize * outputSize * numFilters);
|
||||
|
||||
cudaStatus = cudaMemcpy(
|
||||
@@ -81,4 +105,77 @@ TEST_F(Conv2dTest, SimpleExample) {
|
||||
EXPECT_FLOAT_EQ(expected[i], output[i]);
|
||||
}
|
||||
|
||||
commonTestTeardown(d_input, d_output);
|
||||
}
|
||||
|
||||
TEST_F(Conv2dTest, ComplexTest) {
|
||||
int inputSize = 5;
|
||||
int inputChannels = 3;
|
||||
int kernelSize = 3;
|
||||
int stride = 1;
|
||||
std::string padding = "SAME";
|
||||
int numFilters = 2;
|
||||
Activation activation = LINEAR;
|
||||
|
||||
std::vector<float> input = {
|
||||
// Channel 1
|
||||
0.823f, 0.217f, 0.435f, 0.981f, 0.742f,
|
||||
0.109f, 0.518f, 0.374f, 0.681f, 0.147f,
|
||||
0.956f, 0.729f, 0.654f, 0.087f, 0.392f,
|
||||
0.784f, 0.921f, 0.543f, 0.231f, 0.816f,
|
||||
0.472f, 0.614f, 0.102f, 0.987f, 0.398f,
|
||||
// Channel 2
|
||||
0.051f, 0.756f, 0.841f, 0.293f, 0.128f,
|
||||
0.417f, 0.632f, 0.095f, 0.184f, 0.529f,
|
||||
0.871f, 0.958f, 0.213f, 0.347f, 0.725f,
|
||||
0.461f, 0.012f, 0.278f, 0.195f, 0.649f,
|
||||
0.853f, 0.707f, 0.988f, 0.988f, 0.322f,
|
||||
// Channel 3
|
||||
0.345f, 0.123f, 0.789f, 0.123f, 0.456f,
|
||||
0.456f, 0.789f, 0.123f, 0.345f, 0.123f,
|
||||
0.789f, 0.123f, 0.345f, 0.123f, 0.456f,
|
||||
0.123f, 0.345f, 0.123f, 0.789f, 0.123f,
|
||||
0.345f, 0.123f, 0.789f, 0.123f, 0.456f
|
||||
};
|
||||
|
||||
std::vector<float> kernels = {
|
||||
// Filter 1 Channel 1
|
||||
0.128f, 0.754f, 0.987f,
|
||||
0.321f, 0.412f, 0.635f,
|
||||
0.298f, 0.017f, 0.845f,
|
||||
// Filter 1 Channel 2
|
||||
0.514f, 0.729f, 0.952f,
|
||||
0.684f, 0.378f, 0.159f,
|
||||
0.823f, 0.547f, 0.216f,
|
||||
// Filter 1 Channel 3
|
||||
0.456f, 0.123f, 0.789f,
|
||||
0.123f, 0.345f, 0.123f,
|
||||
0.789f, 0.123f, 0.345f,
|
||||
// Filter 2 Channel 1
|
||||
0.123f, 0.345f, 0.123f,
|
||||
0.789f, 0.123f, 0.345f,
|
||||
0.123f, 0.345f, 0.123f,
|
||||
// Filter 2 Channel 2
|
||||
0.146f, 0.789f, 0.123f,
|
||||
0.345f, 0.123f, 0.789f,
|
||||
0.123f, 0.345f, 0.123f,
|
||||
// Filter 2 Channel 3
|
||||
0.123f, 0.345f, 0.123f,
|
||||
0.789f, 0.123f, 0.345f,
|
||||
0.123f, 0.345f, 0.123f
|
||||
|
||||
|
||||
};
|
||||
|
||||
float* d_input;
|
||||
float* d_output;
|
||||
|
||||
Layers::Conv2d conv2d = commonTestSetup(
|
||||
inputSize, inputChannels, kernelSize, stride, padding, numFilters,
|
||||
activation, input, kernels, d_input, d_output
|
||||
);
|
||||
|
||||
EXPECT_EQ(inputSize, conv2d.outputSize);
|
||||
|
||||
conv2d.forward(d_input, d_output);
|
||||
}
|
||||
Reference in New Issue
Block a user