mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-06 17:54:27 +00:00
181 lines
5.3 KiB
Plaintext
181 lines
5.3 KiB
Plaintext
#include <cuda_runtime_api.h>
|
|
#include <gtest/gtest.h>
|
|
|
|
#include <iostream>
|
|
|
|
#include "conv2d.cuh"
|
|
|
|
class Conv2dTest : public ::testing::Test {
|
|
protected:
|
|
Layers::Conv2d commonTestSetup(
|
|
int inputSize,
|
|
int inputChannels,
|
|
int kernelSize,
|
|
int stride,
|
|
std::string padding,
|
|
int numFilters,
|
|
Activation activation,
|
|
std::vector<float>& input,
|
|
std::vector<float>& kernels,
|
|
float*& d_input,
|
|
float*& d_output
|
|
) {
|
|
// Create Conv2d layer
|
|
Layers::Conv2d conv2d(
|
|
inputSize, inputChannels, kernelSize, stride, padding, numFilters,
|
|
activation
|
|
);
|
|
|
|
conv2d.setKernels(kernels);
|
|
|
|
// Allocate device memory
|
|
cudaStatus = cudaMalloc(
|
|
(void**)&d_input, sizeof(float) * inputSize * inputSize * inputChannels
|
|
);
|
|
EXPECT_EQ(cudaStatus, cudaSuccess);
|
|
|
|
cudaStatus = cudaMalloc(
|
|
(void**)&d_output, sizeof(float) * conv2d.outputSize * conv2d.outputSize * numFilters
|
|
);
|
|
EXPECT_EQ(cudaStatus, cudaSuccess);
|
|
|
|
// // Copy input to device
|
|
cudaStatus = cudaMemcpy(
|
|
d_input, input.data(), sizeof(float) * input.size(),
|
|
cudaMemcpyHostToDevice
|
|
);
|
|
EXPECT_EQ(cudaStatus, cudaSuccess);
|
|
|
|
|
|
return conv2d;
|
|
}
|
|
|
|
void commonTestTeardown(float* d_input, float* d_output) {
|
|
// Free device memory
|
|
cudaFree(d_input);
|
|
cudaFree(d_output);
|
|
}
|
|
|
|
cudaError_t cudaStatus;
|
|
};
|
|
|
|
TEST_F(Conv2dTest, SimpleTest) {
|
|
int inputSize = 4;
|
|
int inputChannels = 1;
|
|
int kernelSize = 2;
|
|
int stride = 1;
|
|
std::string padding = "VALID";
|
|
int numFilters = 1;
|
|
Activation activation = LINEAR;
|
|
|
|
std::vector<float> input = {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f,
|
|
7.0f, 8.0f, 9.0f, 10.0f, 11.0f, 12.0f,
|
|
13.0f, 14.0f, 15.0f, 16.0f};
|
|
std::vector<float> kernels = {
|
|
1.0f,
|
|
2.0f,
|
|
3.0f,
|
|
4.0f,
|
|
};
|
|
|
|
float* d_input;
|
|
float* d_output;
|
|
|
|
Layers::Conv2d conv2d = commonTestSetup(
|
|
inputSize, inputChannels, kernelSize, stride, padding, numFilters,
|
|
activation, input, kernels, d_input, d_output
|
|
);
|
|
|
|
int outputSize = (inputSize - kernelSize) / stride + 1;
|
|
EXPECT_EQ(outputSize, conv2d.outputSize);
|
|
|
|
conv2d.forward(d_input, d_output);
|
|
|
|
std::vector<float> expected = {44.0f, 54.0f, 64.0f, 84.0f, 94.0f,
|
|
104.0f, 124.0f, 134.0f, 144.0f};
|
|
std::vector<float> output(outputSize * outputSize * numFilters);
|
|
|
|
cudaStatus = cudaMemcpy(
|
|
output.data(), d_output, sizeof(float) * output.size(),
|
|
cudaMemcpyDeviceToHost
|
|
);
|
|
EXPECT_EQ(cudaStatus, cudaSuccess);
|
|
|
|
for (int i = 0; i < output.size(); ++i) {
|
|
EXPECT_FLOAT_EQ(expected[i], output[i]);
|
|
}
|
|
|
|
commonTestTeardown(d_input, d_output);
|
|
}
|
|
|
|
TEST_F(Conv2dTest, ComplexTest) {
|
|
int inputSize = 5;
|
|
int inputChannels = 3;
|
|
int kernelSize = 3;
|
|
int stride = 1;
|
|
std::string padding = "SAME";
|
|
int numFilters = 2;
|
|
Activation activation = LINEAR;
|
|
|
|
std::vector<float> input = {
|
|
// Channel 1
|
|
0.823f, 0.217f, 0.435f, 0.981f, 0.742f,
|
|
0.109f, 0.518f, 0.374f, 0.681f, 0.147f,
|
|
0.956f, 0.729f, 0.654f, 0.087f, 0.392f,
|
|
0.784f, 0.921f, 0.543f, 0.231f, 0.816f,
|
|
0.472f, 0.614f, 0.102f, 0.987f, 0.398f,
|
|
// Channel 2
|
|
0.051f, 0.756f, 0.841f, 0.293f, 0.128f,
|
|
0.417f, 0.632f, 0.095f, 0.184f, 0.529f,
|
|
0.871f, 0.958f, 0.213f, 0.347f, 0.725f,
|
|
0.461f, 0.012f, 0.278f, 0.195f, 0.649f,
|
|
0.853f, 0.707f, 0.988f, 0.988f, 0.322f,
|
|
// Channel 3
|
|
0.345f, 0.123f, 0.789f, 0.123f, 0.456f,
|
|
0.456f, 0.789f, 0.123f, 0.345f, 0.123f,
|
|
0.789f, 0.123f, 0.345f, 0.123f, 0.456f,
|
|
0.123f, 0.345f, 0.123f, 0.789f, 0.123f,
|
|
0.345f, 0.123f, 0.789f, 0.123f, 0.456f
|
|
};
|
|
|
|
std::vector<float> kernels = {
|
|
// Filter 1 Channel 1
|
|
0.128f, 0.754f, 0.987f,
|
|
0.321f, 0.412f, 0.635f,
|
|
0.298f, 0.017f, 0.845f,
|
|
// Filter 1 Channel 2
|
|
0.514f, 0.729f, 0.952f,
|
|
0.684f, 0.378f, 0.159f,
|
|
0.823f, 0.547f, 0.216f,
|
|
// Filter 1 Channel 3
|
|
0.456f, 0.123f, 0.789f,
|
|
0.123f, 0.345f, 0.123f,
|
|
0.789f, 0.123f, 0.345f,
|
|
// Filter 2 Channel 1
|
|
0.123f, 0.345f, 0.123f,
|
|
0.789f, 0.123f, 0.345f,
|
|
0.123f, 0.345f, 0.123f,
|
|
// Filter 2 Channel 2
|
|
0.146f, 0.789f, 0.123f,
|
|
0.345f, 0.123f, 0.789f,
|
|
0.123f, 0.345f, 0.123f,
|
|
// Filter 2 Channel 3
|
|
0.123f, 0.345f, 0.123f,
|
|
0.789f, 0.123f, 0.345f,
|
|
0.123f, 0.345f, 0.123f
|
|
|
|
|
|
};
|
|
|
|
float* d_input;
|
|
float* d_output;
|
|
|
|
Layers::Conv2d conv2d = commonTestSetup(
|
|
inputSize, inputChannels, kernelSize, stride, padding, numFilters,
|
|
activation, input, kernels, d_input, d_output
|
|
);
|
|
|
|
EXPECT_EQ(inputSize, conv2d.outputSize);
|
|
|
|
conv2d.forward(d_input, d_output);
|
|
} |