Refactor conv2d test

This commit is contained in:
2024-03-09 22:54:46 +01:00
parent fceef07a9b
commit 96804777ee

View File

@@ -7,12 +7,59 @@
class Conv2dTest : public ::testing::Test {
protected:
Layers::Conv2d commonTestSetup(
int inputSize,
int inputChannels,
int kernelSize,
int stride,
std::string padding,
int numFilters,
Activation activation,
std::vector<float>& input,
std::vector<float>& kernels,
float*& d_input,
float*& d_output
) {
// Create Conv2d layer
Layers::Conv2d conv2d(
inputSize, inputChannels, kernelSize, stride, padding, numFilters,
activation
);
conv2d.setKernels(kernels);
// Allocate device memory
cudaStatus = cudaMalloc(
(void**)&d_input, sizeof(float) * inputSize * inputSize * inputChannels
);
EXPECT_EQ(cudaStatus, cudaSuccess);
cudaStatus = cudaMalloc(
(void**)&d_output, sizeof(float) * conv2d.outputSize * conv2d.outputSize * numFilters
);
EXPECT_EQ(cudaStatus, cudaSuccess);
// // Copy input to device
cudaStatus = cudaMemcpy(
d_input, input.data(), sizeof(float) * input.size(),
cudaMemcpyHostToDevice
);
EXPECT_EQ(cudaStatus, cudaSuccess);
return conv2d;
}
void commonTestTeardown(float* d_input, float* d_output) {
// Free device memory
cudaFree(d_input);
cudaFree(d_output);
}
cudaError_t cudaStatus;
};
TEST_F(Conv2dTest, SimpleExample) {
TEST_F(Conv2dTest, SimpleTest) {
int inputSize = 4;
int inputChannels = 1;
int kernelSize = 2;
@@ -21,54 +68,31 @@ TEST_F(Conv2dTest, SimpleExample) {
int numFilters = 1;
Activation activation = LINEAR;
Layers::Conv2d conv2d(
inputSize,
inputChannels,
kernelSize,
stride,
padding,
numFilters,
activation
);
int outputSize = (inputSize - kernelSize) / stride + 1;
EXPECT_EQ(outputSize, conv2d.outputSize);
std::vector<float> input = {
1.0f, 2.0f, 3.0f, 4.0f,
5.0f, 6.0f, 7.0f, 8.0f,
9.0f, 10.0f, 11.0f, 12.0f,
13.0f, 14.0f, 15.0f, 16.0f
};
std::vector<float> input = {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f,
7.0f, 8.0f, 9.0f, 10.0f, 11.0f, 12.0f,
13.0f, 14.0f, 15.0f, 16.0f};
std::vector<float> kernels = {
1.0f, 2.0f, 3.0f, 4.0f,
1.0f,
2.0f,
3.0f,
4.0f,
};
float* d_input;
float* d_output;
conv2d.setKernels(kernels);
// Allocate device memory
cudaStatus = cudaMalloc((void**)&d_input, sizeof(float) * inputSize * inputSize * inputChannels);
EXPECT_EQ(cudaStatus, cudaSuccess);
cudaStatus = cudaMalloc((void**)&d_output, sizeof(float) * outputSize * outputSize * numFilters);
EXPECT_EQ(cudaStatus, cudaSuccess);
// // Copy input to device
cudaStatus = cudaMemcpy(
d_input, input.data(), sizeof(float) * input.size(), cudaMemcpyHostToDevice
Layers::Conv2d conv2d = commonTestSetup(
inputSize, inputChannels, kernelSize, stride, padding, numFilters,
activation, input, kernels, d_input, d_output
);
EXPECT_EQ(cudaStatus, cudaSuccess);
int outputSize = (inputSize - kernelSize) / stride + 1;
EXPECT_EQ(outputSize, conv2d.outputSize);
conv2d.forward(d_input, d_output);
std::vector<float> expected = {
44.0f, 54.0f, 64.0f,
84.0f, 94.0f, 104.0f,
124.0f, 134.0f, 144.0f
};
std::vector<float> expected = {44.0f, 54.0f, 64.0f, 84.0f, 94.0f,
104.0f, 124.0f, 134.0f, 144.0f};
std::vector<float> output(outputSize * outputSize * numFilters);
cudaStatus = cudaMemcpy(
@@ -81,4 +105,77 @@ TEST_F(Conv2dTest, SimpleExample) {
EXPECT_FLOAT_EQ(expected[i], output[i]);
}
commonTestTeardown(d_input, d_output);
}
TEST_F(Conv2dTest, ComplexTest) {
int inputSize = 5;
int inputChannels = 3;
int kernelSize = 3;
int stride = 1;
std::string padding = "SAME";
int numFilters = 2;
Activation activation = LINEAR;
std::vector<float> input = {
// Channel 1
0.823f, 0.217f, 0.435f, 0.981f, 0.742f,
0.109f, 0.518f, 0.374f, 0.681f, 0.147f,
0.956f, 0.729f, 0.654f, 0.087f, 0.392f,
0.784f, 0.921f, 0.543f, 0.231f, 0.816f,
0.472f, 0.614f, 0.102f, 0.987f, 0.398f,
// Channel 2
0.051f, 0.756f, 0.841f, 0.293f, 0.128f,
0.417f, 0.632f, 0.095f, 0.184f, 0.529f,
0.871f, 0.958f, 0.213f, 0.347f, 0.725f,
0.461f, 0.012f, 0.278f, 0.195f, 0.649f,
0.853f, 0.707f, 0.988f, 0.988f, 0.322f,
// Channel 3
0.345f, 0.123f, 0.789f, 0.123f, 0.456f,
0.456f, 0.789f, 0.123f, 0.345f, 0.123f,
0.789f, 0.123f, 0.345f, 0.123f, 0.456f,
0.123f, 0.345f, 0.123f, 0.789f, 0.123f,
0.345f, 0.123f, 0.789f, 0.123f, 0.456f
};
std::vector<float> kernels = {
// Filter 1 Channel 1
0.128f, 0.754f, 0.987f,
0.321f, 0.412f, 0.635f,
0.298f, 0.017f, 0.845f,
// Filter 1 Channel 2
0.514f, 0.729f, 0.952f,
0.684f, 0.378f, 0.159f,
0.823f, 0.547f, 0.216f,
// Filter 1 Channel 3
0.456f, 0.123f, 0.789f,
0.123f, 0.345f, 0.123f,
0.789f, 0.123f, 0.345f,
// Filter 2 Channel 1
0.123f, 0.345f, 0.123f,
0.789f, 0.123f, 0.345f,
0.123f, 0.345f, 0.123f,
// Filter 2 Channel 2
0.146f, 0.789f, 0.123f,
0.345f, 0.123f, 0.789f,
0.123f, 0.345f, 0.123f,
// Filter 2 Channel 3
0.123f, 0.345f, 0.123f,
0.789f, 0.123f, 0.345f,
0.123f, 0.345f, 0.123f
};
float* d_input;
float* d_output;
Layers::Conv2d conv2d = commonTestSetup(
inputSize, inputChannels, kernelSize, stride, padding, numFilters,
activation, input, kernels, d_input, d_output
);
EXPECT_EQ(inputSize, conv2d.outputSize);
conv2d.forward(d_input, d_output);
}