mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-05 17:34:21 +00:00
Add padding to max pooling
This commit is contained in:
@@ -11,7 +11,8 @@ __global__ void Kernels::max_pooling(
|
||||
const dim2d outputSize,
|
||||
const int nChannels,
|
||||
const dim2d poolingSize,
|
||||
const dim2d stride
|
||||
const dim2d stride,
|
||||
const dim2d padding
|
||||
) {
|
||||
int j = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
int i = blockDim.y * blockIdx.y + threadIdx.y;
|
||||
@@ -25,12 +26,16 @@ __global__ void Kernels::max_pooling(
|
||||
|
||||
for (int k = 0; k < poolingSize.first; k++) {
|
||||
for (int l = 0; l < poolingSize.second; l++) {
|
||||
int inputIndex = c * inputSize.first * inputSize.second +
|
||||
(i * stride.first + k) * inputSize.second +
|
||||
(j * stride.second + l);
|
||||
int inputRow = i * stride.first + k - padding.first;
|
||||
int inputCol = j * stride.second + l - padding.second;
|
||||
|
||||
if (d_input[inputIndex] > max) {
|
||||
max = d_input[inputIndex];
|
||||
if (inputRow >= 0 && inputRow < inputSize.first && inputCol >= 0 &&
|
||||
inputCol < inputSize.second) {
|
||||
int inputIndex = c * inputSize.first * inputSize.second +
|
||||
inputRow * inputSize.second + inputCol;
|
||||
if (d_input[inputIndex] > max) {
|
||||
max = d_input[inputIndex];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -62,12 +67,11 @@ __global__ void Kernels::avg_pooling(
|
||||
|
||||
for (int k = 0; k < poolingSize.first; k++) {
|
||||
for (int l = 0; l < poolingSize.second; l++) {
|
||||
|
||||
int inputRow = i * stride.first + k - padding.first;
|
||||
int inputCol = j * stride.second + l - padding.second;
|
||||
|
||||
if (inputRow >= 0 && inputRow < inputSize.first &&
|
||||
inputCol >= 0 && inputCol < inputSize.second) {
|
||||
if (inputRow >= 0 && inputRow < inputSize.first && inputCol >= 0 &&
|
||||
inputCol < inputSize.second) {
|
||||
int inputIndex = c * inputSize.first * inputSize.second +
|
||||
inputRow * inputSize.second + inputCol;
|
||||
sum += d_input[inputIndex];
|
||||
|
||||
@@ -9,23 +9,31 @@ MaxPooling2d::MaxPooling2d(
|
||||
int nChannels,
|
||||
dim2d poolingSize,
|
||||
dim2d stride,
|
||||
dim2d padding,
|
||||
ActivationType activationType
|
||||
)
|
||||
: inputSize(inputSize),
|
||||
nChannels(nChannels),
|
||||
poolingSize(poolingSize),
|
||||
stride(stride) {
|
||||
stride(stride),
|
||||
padding(padding) {
|
||||
outputSize = {
|
||||
(inputSize.first - poolingSize.first) / stride.first + 1,
|
||||
(inputSize.second - poolingSize.second) / stride.second + 1
|
||||
(inputSize.first + 2 * padding.first - poolingSize.first) /
|
||||
stride.first +
|
||||
1,
|
||||
(inputSize.second + 2 * padding.second - poolingSize.second) /
|
||||
stride.second +
|
||||
1
|
||||
};
|
||||
|
||||
activation =
|
||||
new Activation(activationType, outputSize.first * outputSize.second * nChannels);
|
||||
activation = new Activation(
|
||||
activationType, outputSize.first * outputSize.second * nChannels
|
||||
);
|
||||
|
||||
d_output = nullptr;
|
||||
CUDA_CHECK(cudaMalloc(
|
||||
(void**)&d_output, sizeof(float) * outputSize.first * outputSize.second * nChannels
|
||||
(void**)&d_output,
|
||||
sizeof(float) * outputSize.first * outputSize.second * nChannels
|
||||
));
|
||||
}
|
||||
|
||||
@@ -43,7 +51,8 @@ float* MaxPooling2d::forward(const float* d_input) {
|
||||
);
|
||||
|
||||
Kernels::max_pooling<<<grid, block>>>(
|
||||
d_input, d_output, inputSize, outputSize, nChannels, poolingSize, stride
|
||||
d_input, d_output, inputSize, outputSize, nChannels, poolingSize,
|
||||
stride, padding
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
|
||||
Reference in New Issue
Block a user