mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-06 01:34:22 +00:00
Add support for non square matrices
This commit is contained in:
@@ -1,4 +1,5 @@
|
||||
#include "cuda_helper.cuh"
|
||||
#include "layer.cuh"
|
||||
#include "pooling.cuh"
|
||||
|
||||
using namespace CUDANet;
|
||||
@@ -6,26 +7,27 @@ using namespace CUDANet;
|
||||
__global__ void Kernels::max_pooling(
|
||||
const float* __restrict__ d_input,
|
||||
float* __restrict__ d_output,
|
||||
const int inputSize,
|
||||
const int outputSize,
|
||||
const int nChannels,
|
||||
const int poolingSize,
|
||||
const int stride
|
||||
const dim2d inputSize,
|
||||
const dim2d outputSize,
|
||||
const int nChannels,
|
||||
const dim2d poolingSize,
|
||||
const dim2d stride
|
||||
) {
|
||||
int j = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
int i = blockDim.y * blockIdx.y + threadIdx.y;
|
||||
int c = blockDim.z * blockIdx.z + threadIdx.z;
|
||||
|
||||
if (i >= outputSize || j >= outputSize || c >= nChannels) {
|
||||
if (i >= outputSize.first || j >= outputSize.second || c >= nChannels) {
|
||||
return;
|
||||
}
|
||||
|
||||
float max = 0.0f;
|
||||
|
||||
for (int k = 0; k < poolingSize; k++) {
|
||||
for (int l = 0; l < poolingSize; l++) {
|
||||
int inputIndex = c * inputSize * inputSize +
|
||||
(i * stride + k) * inputSize + (j * stride + l);
|
||||
for (int k = 0; k < poolingSize.first; k++) {
|
||||
for (int l = 0; l < poolingSize.second; l++) {
|
||||
int inputIndex = c * inputSize.first * inputSize.second +
|
||||
(i * stride.first + k) * inputSize.second +
|
||||
(j * stride.second + l);
|
||||
|
||||
if (d_input[inputIndex] > max) {
|
||||
max = d_input[inputIndex];
|
||||
@@ -33,37 +35,41 @@ __global__ void Kernels::max_pooling(
|
||||
}
|
||||
}
|
||||
|
||||
d_output[c * outputSize * outputSize + i * outputSize + j] = max;
|
||||
d_output
|
||||
[c * outputSize.first * outputSize.second + i * outputSize.second + j] =
|
||||
max;
|
||||
}
|
||||
|
||||
__global__ void Kernels::avg_pooling(
|
||||
const float* __restrict__ d_input,
|
||||
float* __restrict__ d_output,
|
||||
const int inputSize,
|
||||
const int outputSize,
|
||||
const int nChannels,
|
||||
const int poolingSize,
|
||||
const int stride
|
||||
const dim2d inputSize,
|
||||
const dim2d outputSize,
|
||||
const int nChannels,
|
||||
const dim2d poolingSize,
|
||||
const dim2d stride
|
||||
) {
|
||||
int j = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
int i = blockDim.y * blockIdx.y + threadIdx.y;
|
||||
int c = blockDim.z * blockIdx.z + threadIdx.z;
|
||||
|
||||
if (i >= outputSize || j >= outputSize || c >= outputSize) {
|
||||
if (i >= outputSize.first || j >= outputSize.second || c >= nChannels) {
|
||||
return;
|
||||
}
|
||||
|
||||
float sum = 0.0f;
|
||||
|
||||
for (int k = 0; k < poolingSize; k++) {
|
||||
for (int l = 0; l < poolingSize; l++) {
|
||||
int inputIndex = c * inputSize * inputSize +
|
||||
(i * stride + k) * inputSize + (j * stride + l);
|
||||
for (int k = 0; k < poolingSize.first; k++) {
|
||||
for (int l = 0; l < poolingSize.second; l++) {
|
||||
int inputIndex = c * inputSize.first * inputSize.second +
|
||||
(i * stride.first + k) * inputSize.second +
|
||||
(j * stride.second + l);
|
||||
|
||||
sum += d_input[inputIndex];
|
||||
}
|
||||
}
|
||||
|
||||
d_output[c * outputSize * outputSize + i * outputSize + j] =
|
||||
sum / (poolingSize * poolingSize);
|
||||
d_output
|
||||
[c * outputSize.first * outputSize.second + i * outputSize.second + j] =
|
||||
sum / (poolingSize.first * poolingSize.second);
|
||||
}
|
||||
Reference in New Issue
Block a user