mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-06 01:34:22 +00:00
Move softmax partial kernels to matmul
This commit is contained in:
@@ -4,6 +4,7 @@
|
||||
#include <iostream>
|
||||
|
||||
#include "activation_functions.cuh"
|
||||
#include "matmul.cuh"
|
||||
#include "cuda_helper.cuh"
|
||||
|
||||
TEST(ActivationFunctionsTest, SigmoidSanityCheck) {
|
||||
@@ -43,93 +44,24 @@ TEST(ActivationFunctionsTest, SigmoidSanityCheck) {
|
||||
|
||||
cudaFree(d_input);
|
||||
cudaFree(d_output);
|
||||
|
||||
cudaDeviceReset();
|
||||
}
|
||||
|
||||
TEST(ActivationFunctionsTest, SoftmaxExpTest) {
|
||||
cudaError_t cudaStatus;
|
||||
// void print_vec(float* d_vec, int length) {
|
||||
|
||||
float input[6] = {22.496f, 36.9006f, 30.9904f,
|
||||
28.4213f, 26.4541f, 31.7887f};
|
||||
// std::vector<float> h_vec(length);
|
||||
// CUDA_CHECK(cudaMemcpy(
|
||||
// h_vec.data(), d_vec, sizeof(float) * length, cudaMemcpyDeviceToHost
|
||||
// ));
|
||||
|
||||
std::vector<float> expected = {5886928896.0f, 1.06102872080384e+16f,
|
||||
28771323215872.0f, 2204012904448.0f,
|
||||
308226162688.0f, 63922983927808.0f};
|
||||
// float sum = 0.0f;
|
||||
|
||||
float* d_input;
|
||||
float* d_output;
|
||||
// for (int i = 0; i < length; ++i) {
|
||||
// std::cout << h_vec[i] << ", ";
|
||||
// sum += h_vec[i];
|
||||
// }
|
||||
|
||||
cudaStatus = cudaMalloc((void**)&d_input, sizeof(float) * 6);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
// std::cout << std::endl;
|
||||
|
||||
cudaStatus = cudaMalloc((void**)&d_output, sizeof(float) * 6);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
cudaStatus =
|
||||
cudaMemcpy(d_input, input, sizeof(float) * 6, cudaMemcpyHostToDevice);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
CUDANet::Kernels::softmax_exp<<<1, 6>>>(d_input, d_output, 6);
|
||||
cudaStatus = cudaDeviceSynchronize();
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
std::vector<float> output(6);
|
||||
|
||||
cudaStatus = cudaMemcpy(
|
||||
output.data(), d_output, sizeof(float) * 6, cudaMemcpyDeviceToHost
|
||||
);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
for (int i = 0; i < 6; i++) {
|
||||
EXPECT_NEAR(expected[i], output[i], 1e7);
|
||||
}
|
||||
|
||||
cudaFree(d_input);
|
||||
cudaFree(d_output);
|
||||
}
|
||||
|
||||
TEST(ActivationFunctionsTest, SoftmaxSumTest) {
|
||||
cudaError_t cudaStatus;
|
||||
|
||||
const int n = 10;
|
||||
std::vector<float> input(n);
|
||||
for (int i = 0; i < n; i++) {
|
||||
input[i] = i;
|
||||
}
|
||||
|
||||
const float expected = n * (n - 1) / 2;
|
||||
|
||||
float* d_input;
|
||||
float* d_sum;
|
||||
|
||||
const int gridSize = (n + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
|
||||
cudaStatus = cudaMalloc((void**)&d_input, sizeof(float) * n);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
cudaStatus = cudaMalloc((void**)&d_sum, sizeof(float) * n);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
cudaStatus =
|
||||
cudaMemcpy(d_input, input.data(), sizeof(float) * n, cudaMemcpyHostToDevice);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
CUDANet::Kernels::softmax_sum<<<gridSize, BLOCK_SIZE>>>(
|
||||
d_input, d_sum
|
||||
);
|
||||
|
||||
CUDANet::Kernels::softmax_sum<<<1, BLOCK_SIZE>>>(
|
||||
d_sum, d_sum
|
||||
);
|
||||
|
||||
CUDANet::Kernels::softmax_sum<<<1, BLOCK_SIZE>>>(
|
||||
d_sum, d_sum
|
||||
);
|
||||
|
||||
std::vector<float> sum(n);
|
||||
cudaStatus = cudaMemcpy(
|
||||
sum.data(), d_sum, sizeof(float) * n, cudaMemcpyDeviceToHost
|
||||
);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
EXPECT_FLOAT_EQ(expected, sum[0]);
|
||||
}
|
||||
// }
|
||||
@@ -73,33 +73,141 @@ TEST(MatMulTest, MatVecMulTest) {
|
||||
TEST(MatMulTest, MaxReduceTest) {
|
||||
cudaError_t cudaStatus;
|
||||
|
||||
std::vector<float> input = {0.643f, 0.912f, 0.723f, 0.587f, 0.155f, 0.932f, 0.391f, 0.279f, 0.846f, 0.788f};
|
||||
const int n = 1 << 16;
|
||||
|
||||
std::vector<float> input(n);
|
||||
for (int i = 0; i < n; i++) {
|
||||
input[i] = i;
|
||||
}
|
||||
|
||||
float* d_input;
|
||||
float* d_output;
|
||||
|
||||
cudaStatus = cudaMalloc((void**)&d_input, sizeof(float) * 10);
|
||||
cudaStatus = cudaMalloc((void**)&d_input, sizeof(float) * n);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
cudaStatus = cudaMalloc((void**)&d_output, sizeof(float));
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
cudaStatus = cudaMemcpy(d_input, input.data(), sizeof(float) * 10, cudaMemcpyHostToDevice);
|
||||
cudaStatus = cudaMemcpy(d_input, input.data(), sizeof(float) * n, cudaMemcpyHostToDevice);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
const int grid_size = (10 + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
const int grid_size = (n + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
|
||||
CUDANet::Kernels::max_reduce<<<grid_size, BLOCK_SIZE>>>(d_input, d_output);
|
||||
CUDANet::Kernels::max_reduce<<<1, BLOCK_SIZE>>>(d_output, d_output);
|
||||
CUDANet::Kernels::max_reduce<<<grid_size, BLOCK_SIZE>>>(d_input, d_output, n);
|
||||
|
||||
std::vector<float> output(10);
|
||||
int remaining = grid_size;
|
||||
while (remaining > 1) {
|
||||
int blocks_needed = (remaining + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
CUDANet::Kernels::max_reduce<<<blocks_needed, BLOCK_SIZE>>>(d_output, d_output, remaining);
|
||||
remaining = blocks_needed;
|
||||
}
|
||||
|
||||
std::vector<float> output(n);
|
||||
cudaStatus = cudaMemcpy(output.data(), d_output, sizeof(float), cudaMemcpyDeviceToHost);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
EXPECT_EQ(output[0], 0.932f);
|
||||
EXPECT_EQ(output[0], 65535.0f);
|
||||
|
||||
cudaFree(d_input);
|
||||
cudaFree(d_output);
|
||||
|
||||
cudaDeviceReset();
|
||||
}
|
||||
|
||||
TEST(MatMulTest, VecExpTest) {
|
||||
cudaError_t cudaStatus;
|
||||
|
||||
float input[6] = {22.496f, 36.9006f, 30.9904f,
|
||||
28.4213f, 26.4541f, 31.7887f};
|
||||
|
||||
std::vector<float> expected = {5886928896.0f, 1.06102872080384e+16f,
|
||||
28771323215872.0f, 2204012904448.0f,
|
||||
308226162688.0f, 63922983927808.0f};
|
||||
|
||||
float* d_input;
|
||||
float* d_output;
|
||||
|
||||
cudaStatus = cudaMalloc((void**)&d_input, sizeof(float) * 6);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
cudaStatus = cudaMalloc((void**)&d_output, sizeof(float) * 6);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
cudaStatus =
|
||||
cudaMemcpy(d_input, input, sizeof(float) * 6, cudaMemcpyHostToDevice);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
CUDANet::Kernels::vec_exp<<<1, 6>>>(d_input, d_output, 6);
|
||||
cudaStatus = cudaDeviceSynchronize();
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
std::vector<float> output(6);
|
||||
|
||||
cudaStatus = cudaMemcpy(
|
||||
output.data(), d_output, sizeof(float) * 6, cudaMemcpyDeviceToHost
|
||||
);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
for (int i = 0; i < 6; i++) {
|
||||
EXPECT_NEAR(expected[i], output[i], 1e7);
|
||||
}
|
||||
|
||||
cudaFree(d_input);
|
||||
cudaFree(d_output);
|
||||
|
||||
cudaDeviceReset();
|
||||
}
|
||||
|
||||
TEST(MatMulTest, SumReduceTest) {
|
||||
cudaError_t cudaStatus;
|
||||
|
||||
const int n = 1 << 16;
|
||||
|
||||
std::vector<float> input(n);
|
||||
for (int i = 0; i < n; i++) {
|
||||
input[i] = 1.0f;
|
||||
}
|
||||
|
||||
const float expected = n;
|
||||
|
||||
float* d_input = nullptr;
|
||||
float* d_sum = nullptr;
|
||||
|
||||
const int gridSize = (n + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
|
||||
cudaStatus = cudaMalloc((void**)&d_input, sizeof(float) * n);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
cudaStatus = cudaMalloc((void**)&d_sum, sizeof(float) * n);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
cudaStatus =
|
||||
cudaMemcpy(d_input, input.data(), sizeof(float) * n, cudaMemcpyHostToDevice);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
CUDANet::Kernels::sum_reduce<<<gridSize, BLOCK_SIZE>>>(
|
||||
d_input, d_sum, n
|
||||
);
|
||||
|
||||
int remaining = gridSize;
|
||||
while (remaining > 1) {
|
||||
std::cout << remaining << std::endl;
|
||||
int blocks_needed = (remaining + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
CUDANet::Kernels::sum_reduce<<<blocks_needed, BLOCK_SIZE>>>(d_sum, d_sum, remaining);
|
||||
remaining = blocks_needed;
|
||||
}
|
||||
|
||||
std::vector<float> sum(n);
|
||||
cudaStatus = cudaMemcpy(
|
||||
sum.data(), d_sum, sizeof(float) * n, cudaMemcpyDeviceToHost
|
||||
);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
EXPECT_FLOAT_EQ(expected, sum[0]);
|
||||
|
||||
cudaFree(d_input);
|
||||
cudaFree(d_sum);
|
||||
|
||||
cudaDeviceReset();
|
||||
}
|
||||
Reference in New Issue
Block a user