Files
CUDANet/test/kernels/test_matmul.cu

213 lines
6.1 KiB
Plaintext

#include <cuda_runtime_api.h>
#include <gtest/gtest.h>
#include <vector>
#include "cuda_helper.cuh"
#include "matmul.cuh"
TEST(MatMulTest, MatVecMulTest) {
cudaError_t cudaStatus;
int w = 10;
int h = 5;
float* d_matrix;
float* d_vector;
float* d_output;
cudaStatus = cudaMalloc((void**)&d_matrix, sizeof(float) * w * h);
EXPECT_EQ(cudaStatus, cudaSuccess);
cudaStatus = cudaMalloc((void**)&d_vector, sizeof(float) * w);
EXPECT_EQ(cudaStatus, cudaSuccess);
cudaStatus = cudaMalloc((void**)&d_output, sizeof(float) * h);
EXPECT_EQ(cudaStatus, cudaSuccess);
std::vector<float> matrix = {
0.643f, 0.912f, 0.723f, 0.587f, 0.155f, 0.932f, 0.391f, 0.279f, 0.846f, 0.788f,
0.641f, 0.445f, 0.528f, 0.316f, 0.247f, 0.181f, 0.549f, 0.328f, 0.919f, 0.405f,
0.733f, 0.287f, 0.901f, 0.602f, 0.816f, 0.495f, 0.797f, 0.210f, 0.305f, 0.613f,
0.178f, 0.856f, 0.724f, 0.263f, 0.559f, 0.677f, 0.193f, 0.389f, 0.488f, 0.848f,
0.121f, 0.734f, 0.587f, 0.904f, 0.312f, 0.672f, 0.807f, 0.478f, 0.581f, 0.964f
};
std::vector<float> vector = {
0.643f, 0.912f, 0.723f, 0.587f, 0.155f, 0.932f, 0.391f, 0.279f, 0.846f, 0.788f
};
cudaStatus = cudaMemcpy(d_matrix, matrix.data(), sizeof(float) * w * h, cudaMemcpyHostToDevice);
EXPECT_EQ(cudaStatus, cudaSuccess);
cudaStatus = cudaMemcpy(d_vector, vector.data(), sizeof(float) * w, cudaMemcpyHostToDevice);
EXPECT_EQ(cudaStatus, cudaSuccess);
int THREADS_PER_BLOCK = std::max(w, h);
int BLOCKS = 1;
CUDANet::Kernels::clear<<<BLOCKS, h>>>(d_output, h);
CUDANet::Kernels::mat_vec_mul<<<BLOCKS, THREADS_PER_BLOCK, sizeof(float) * w>>>(d_matrix, d_vector, d_output, w, h);
cudaStatus = cudaDeviceSynchronize();
EXPECT_EQ(cudaStatus, cudaSuccess);
std::vector<float> output_gpu(h);
cudaStatus = cudaMemcpy(output_gpu.data(), d_output, sizeof(float) * h, cudaMemcpyDeviceToHost);
EXPECT_EQ(cudaStatus, cudaSuccess);
for (int i = 0; i < h; i++) {
float sum = 0.0f;
for (int j = 0; j < w; j++) {
sum += matrix[i * w + j] * vector[j];
}
EXPECT_NEAR(sum, output_gpu[i], 1e-5);
}
cudaFree(d_matrix);
cudaFree(d_vector);
cudaFree(d_output);
cudaDeviceReset();
}
TEST(MatMulTest, MaxReduceTest) {
cudaError_t cudaStatus;
const int n = 1 << 16;
std::vector<float> input(n);
for (int i = 0; i < n; i++) {
input[i] = i;
}
float* d_input;
float* d_output;
cudaStatus = cudaMalloc((void**)&d_input, sizeof(float) * n);
EXPECT_EQ(cudaStatus, cudaSuccess);
cudaStatus = cudaMalloc((void**)&d_output, sizeof(float));
EXPECT_EQ(cudaStatus, cudaSuccess);
cudaStatus = cudaMemcpy(d_input, input.data(), sizeof(float) * n, cudaMemcpyHostToDevice);
EXPECT_EQ(cudaStatus, cudaSuccess);
const int grid_size = (n + BLOCK_SIZE - 1) / BLOCK_SIZE;
CUDANet::Kernels::max_reduce<<<grid_size, BLOCK_SIZE>>>(d_input, d_output, n);
int remaining = grid_size;
while (remaining > 1) {
int blocks_needed = (remaining + BLOCK_SIZE - 1) / BLOCK_SIZE;
CUDANet::Kernels::max_reduce<<<blocks_needed, BLOCK_SIZE>>>(d_output, d_output, remaining);
remaining = blocks_needed;
}
std::vector<float> output(n);
cudaStatus = cudaMemcpy(output.data(), d_output, sizeof(float), cudaMemcpyDeviceToHost);
EXPECT_EQ(cudaStatus, cudaSuccess);
EXPECT_EQ(output[0], 65535.0f);
cudaFree(d_input);
cudaFree(d_output);
cudaDeviceReset();
}
TEST(MatMulTest, VecExpTest) {
cudaError_t cudaStatus;
float input[6] = {22.496f, 36.9006f, 30.9904f,
28.4213f, 26.4541f, 31.7887f};
std::vector<float> expected = {5886928896.0f, 1.06102872080384e+16f,
28771323215872.0f, 2204012904448.0f,
308226162688.0f, 63922983927808.0f};
float* d_input;
float* d_output;
cudaStatus = cudaMalloc((void**)&d_input, sizeof(float) * 6);
EXPECT_EQ(cudaStatus, cudaSuccess);
cudaStatus = cudaMalloc((void**)&d_output, sizeof(float) * 6);
EXPECT_EQ(cudaStatus, cudaSuccess);
cudaStatus =
cudaMemcpy(d_input, input, sizeof(float) * 6, cudaMemcpyHostToDevice);
EXPECT_EQ(cudaStatus, cudaSuccess);
CUDANet::Kernels::vec_exp<<<1, 6>>>(d_input, d_output, 6);
cudaStatus = cudaDeviceSynchronize();
EXPECT_EQ(cudaStatus, cudaSuccess);
std::vector<float> output(6);
cudaStatus = cudaMemcpy(
output.data(), d_output, sizeof(float) * 6, cudaMemcpyDeviceToHost
);
EXPECT_EQ(cudaStatus, cudaSuccess);
for (int i = 0; i < 6; i++) {
EXPECT_NEAR(expected[i], output[i], 1e7);
}
cudaFree(d_input);
cudaFree(d_output);
cudaDeviceReset();
}
TEST(MatMulTest, SumReduceTest) {
cudaError_t cudaStatus;
const int n = 1 << 16;
std::vector<float> input(n);
for (int i = 0; i < n; i++) {
input[i] = 1.0f;
}
const float expected = n;
float* d_input = nullptr;
float* d_sum = nullptr;
const int gridSize = (n + BLOCK_SIZE - 1) / BLOCK_SIZE;
cudaStatus = cudaMalloc((void**)&d_input, sizeof(float) * n);
EXPECT_EQ(cudaStatus, cudaSuccess);
cudaStatus = cudaMalloc((void**)&d_sum, sizeof(float) * n);
EXPECT_EQ(cudaStatus, cudaSuccess);
cudaStatus =
cudaMemcpy(d_input, input.data(), sizeof(float) * n, cudaMemcpyHostToDevice);
EXPECT_EQ(cudaStatus, cudaSuccess);
CUDANet::Kernels::sum_reduce<<<gridSize, BLOCK_SIZE>>>(
d_input, d_sum, n
);
int remaining = gridSize;
while (remaining > 1) {
std::cout << remaining << std::endl;
int blocks_needed = (remaining + BLOCK_SIZE - 1) / BLOCK_SIZE;
CUDANet::Kernels::sum_reduce<<<blocks_needed, BLOCK_SIZE>>>(d_sum, d_sum, remaining);
remaining = blocks_needed;
}
std::vector<float> sum(n);
cudaStatus = cudaMemcpy(
sum.data(), d_sum, sizeof(float) * n, cudaMemcpyDeviceToHost
);
EXPECT_EQ(cudaStatus, cudaSuccess);
EXPECT_FLOAT_EQ(expected, sum[0]);
cudaFree(d_input);
cudaFree(d_sum);
cudaDeviceReset();
}