mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-06 09:44:28 +00:00
Implement avg pool test
This commit is contained in:
@@ -1,8 +1,20 @@
|
||||
import torch
|
||||
|
||||
def _conv2d(in_channels, out_channels, kernel_size, stride, padding, inputs, weights):
|
||||
|
||||
conv2d = torch.nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, bias=False)
|
||||
def _conv2d(in_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
stride,
|
||||
padding,
|
||||
inputs,
|
||||
weights):
|
||||
|
||||
conv2d = torch.nn.Conv2d(in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
kernel_size=kernel_size,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
bias=False)
|
||||
conv2d.weight = torch.nn.Parameter(weights)
|
||||
|
||||
output = conv2d(inputs)
|
||||
@@ -11,6 +23,7 @@ def _conv2d(in_channels, out_channels, kernel_size, stride, padding, inputs, wei
|
||||
output = torch.flatten(output)
|
||||
return output
|
||||
|
||||
|
||||
def _print_cpp_vector(vector):
|
||||
print("std::vector<float> expected = {", end="")
|
||||
for i in range(len(vector)):
|
||||
@@ -20,6 +33,19 @@ def _print_cpp_vector(vector):
|
||||
print("};")
|
||||
|
||||
|
||||
def _get_pool_input():
|
||||
return torch.tensor([
|
||||
0.573, 0.619, 0.732, 0.055,
|
||||
0.243, 0.316, 0.573, 0.619,
|
||||
0.712, 0.055, 0.243, 0.316,
|
||||
0.573, 0.619, 0.742, 0.055,
|
||||
0.473, 0.919, 0.107, 0.073,
|
||||
0.073, 0.362, 0.973, 0.059,
|
||||
0.473, 0.455, 0.283, 0.416,
|
||||
0.532, 0.819, 0.732, 0.850
|
||||
]).reshape(1, 2, 4, 4)
|
||||
|
||||
|
||||
def gen_convd_padded_test_result():
|
||||
|
||||
in_channels = 3
|
||||
@@ -68,9 +94,16 @@ def gen_convd_padded_test_result():
|
||||
0.011, 0.345, 0.678
|
||||
], dtype=torch.float).reshape(2, 3, 3, 3)
|
||||
|
||||
output = _conv2d(in_channels, out_channels, kernel_size, stride, padding, inputs, weights)
|
||||
output = _conv2d(in_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
stride,
|
||||
padding,
|
||||
inputs,
|
||||
weights)
|
||||
_print_cpp_vector(output)
|
||||
|
||||
|
||||
def gen_convd_strided_test_result():
|
||||
|
||||
in_channels = 2
|
||||
@@ -78,7 +111,7 @@ def gen_convd_strided_test_result():
|
||||
kernel_size = 3
|
||||
stride = 2
|
||||
padding = 3
|
||||
|
||||
|
||||
input = torch.tensor([
|
||||
0.946, 0.879, 0.382, 0.542, 0.453,
|
||||
0.128, 0.860, 0.778, 0.049, 0.974,
|
||||
@@ -106,9 +139,16 @@ def gen_convd_strided_test_result():
|
||||
0.939, 0.891, 0.006
|
||||
], dtype=torch.float).reshape(2, 2, 3, 3)
|
||||
|
||||
output = _conv2d(in_channels, out_channels, kernel_size, stride, padding, input, weights)
|
||||
output = _conv2d(in_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
stride,
|
||||
padding,
|
||||
input,
|
||||
weights)
|
||||
_print_cpp_vector(output)
|
||||
|
||||
|
||||
def gen_softmax_test_result():
|
||||
input = torch.tensor([
|
||||
0.573, 0.619, 0.732, 0.055, 0.243
|
||||
@@ -117,17 +157,9 @@ def gen_softmax_test_result():
|
||||
output = torch.nn.Softmax(dim=0)(input)
|
||||
_print_cpp_vector(output)
|
||||
|
||||
|
||||
def gen_max_pool_test_result():
|
||||
input = torch.tensor([
|
||||
0.573, 0.619, 0.732, 0.055,
|
||||
0.243, 0.316, 0.573, 0.619,
|
||||
0.712, 0.055, 0.243, 0.316,
|
||||
0.573, 0.619, 0.742, 0.055,
|
||||
0.473, 0.919, 0.107, 0.073,
|
||||
0.073, 0.362, 0.973, 0.059,
|
||||
0.473, 0.455, 0.283, 0.416,
|
||||
0.532, 0.819, 0.732, 0.850
|
||||
]).reshape(1, 2, 4, 4)
|
||||
input = _get_pool_input()
|
||||
|
||||
output = torch.nn.MaxPool2d(kernel_size=2, stride=2)(input)
|
||||
output = torch.flatten(output)
|
||||
@@ -135,13 +167,25 @@ def gen_max_pool_test_result():
|
||||
_print_cpp_vector(output)
|
||||
|
||||
|
||||
def gen_avg_pool_test_result():
|
||||
|
||||
input = _get_pool_input()
|
||||
|
||||
output = torch.nn.AvgPool2d(kernel_size=2, stride=2)(input)
|
||||
output = torch.flatten(output)
|
||||
|
||||
_print_cpp_vector(output)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# print("Generating test results...")
|
||||
# print("Padded convolution test:")
|
||||
# gen_convd_padded_test_result()
|
||||
# print("Strided convolution test:")
|
||||
# gen_convd_strided_test_result()
|
||||
# print("Softmax test:")
|
||||
# gen_softmax_test_result()
|
||||
print("Generating test results...")
|
||||
print("Padded convolution test:")
|
||||
gen_convd_padded_test_result()
|
||||
print("Strided convolution test:")
|
||||
gen_convd_strided_test_result()
|
||||
print("Softmax test:")
|
||||
gen_softmax_test_result()
|
||||
print("Max pool test:")
|
||||
gen_max_pool_test_result()
|
||||
gen_max_pool_test_result()
|
||||
print("Avg pool test:")
|
||||
gen_avg_pool_test_result()
|
||||
|
||||
Reference in New Issue
Block a user