mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-05 17:34:21 +00:00
Implement avg pool test
This commit is contained in:
@@ -19,6 +19,15 @@ class AvgPooling2D : public SequentialLayer {
|
||||
|
||||
float* forward(const float* d_input);
|
||||
|
||||
/**
|
||||
* @brief Get the output width (/ height) of the layer
|
||||
*
|
||||
* @return int
|
||||
*/
|
||||
int getOutputSize() {
|
||||
return outputSize;
|
||||
}
|
||||
|
||||
private:
|
||||
int inputSize;
|
||||
int nChannels;
|
||||
@@ -26,7 +35,6 @@ class AvgPooling2D : public SequentialLayer {
|
||||
int stride;
|
||||
|
||||
int outputSize;
|
||||
int gridSize;
|
||||
|
||||
float* d_output;
|
||||
|
||||
|
||||
@@ -37,7 +37,6 @@ class MaxPooling2D : public SequentialLayer {
|
||||
int stride;
|
||||
|
||||
int outputSize;
|
||||
int gridSize;
|
||||
|
||||
float* d_output;
|
||||
|
||||
|
||||
@@ -49,7 +49,7 @@ __global__ void Kernels::avg_pooling(
|
||||
int i = blockDim.y * blockIdx.y + threadIdx.y;
|
||||
int c = blockDim.z * blockIdx.z + threadIdx.z;
|
||||
|
||||
if (i >= inputSize || j >= inputSize || c >= nChannels) {
|
||||
if (i >= outputSize || j >= outputSize || c >= outputSize) {
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
@@ -24,9 +24,6 @@ AvgPooling2D::AvgPooling2D(
|
||||
CUDA_CHECK(cudaMalloc(
|
||||
(void**)&d_output, sizeof(float) * outputSize * outputSize * nChannels
|
||||
));
|
||||
|
||||
gridSize =
|
||||
(outputSize * outputSize * nChannels + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
}
|
||||
|
||||
AvgPooling2D::~AvgPooling2D() {
|
||||
|
||||
@@ -25,9 +25,6 @@ MaxPooling2D::MaxPooling2D(
|
||||
CUDA_CHECK(cudaMalloc(
|
||||
(void**)&d_output, sizeof(float) * outputSize * outputSize * nChannels
|
||||
));
|
||||
|
||||
gridSize = (outputSize * outputSize * nChannels + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
70
test/layers/test_avg_pooling.cu
Normal file
70
test/layers/test_avg_pooling.cu
Normal file
@@ -0,0 +1,70 @@
|
||||
#include <cuda_runtime.h>
|
||||
#include <gtest/gtest.h>
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "avg_pooling.cuh"
|
||||
|
||||
TEST(AvgPoolingLayerTest, AvgPoolForwardTest) {
|
||||
int inputSize = 4;
|
||||
int nChannels = 2;
|
||||
int poolingSize = 2;
|
||||
int stride = 2;
|
||||
|
||||
cudaError_t cudaStatus;
|
||||
|
||||
std::vector<float> input = {
|
||||
// clang-format off
|
||||
// Channel 0
|
||||
0.573f, 0.619f, 0.732f, 0.055f,
|
||||
0.243f, 0.316f, 0.573f, 0.619f,
|
||||
0.712f, 0.055f, 0.243f, 0.316f,
|
||||
0.573f, 0.619f, 0.742f, 0.055f,
|
||||
// Channel 1
|
||||
0.473f, 0.919f, 0.107f, 0.073f,
|
||||
0.073f, 0.362f, 0.973f, 0.059f,
|
||||
0.473f, 0.455f, 0.283f, 0.416f,
|
||||
0.532f, 0.819f, 0.732f, 0.850f
|
||||
// clang-format on
|
||||
};
|
||||
|
||||
CUDANet::Layers::AvgPooling2D avgPoolingLayer(
|
||||
inputSize, nChannels, poolingSize, stride,
|
||||
CUDANet::Layers::ActivationType::NONE
|
||||
);
|
||||
|
||||
float *d_input;
|
||||
|
||||
cudaStatus = cudaMalloc(
|
||||
(void **)&d_input, sizeof(float) * inputSize * inputSize * nChannels
|
||||
);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
cudaStatus = cudaMemcpy(
|
||||
d_input, input.data(),
|
||||
sizeof(float) * inputSize * inputSize * nChannels,
|
||||
cudaMemcpyHostToDevice
|
||||
);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
float *d_output = avgPoolingLayer.forward(d_input);
|
||||
|
||||
int outputSize = avgPoolingLayer.getOutputSize();
|
||||
|
||||
std::vector<float> output(outputSize * outputSize * nChannels);
|
||||
cudaStatus = cudaMemcpy(
|
||||
output.data(), d_output,
|
||||
sizeof(float) * outputSize * outputSize * nChannels,
|
||||
cudaMemcpyDeviceToHost
|
||||
);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
std::vector<float> expected = {0.43775f, 0.49475f, 0.48975f, 0.339f, 0.45675f, 0.303f, 0.56975f, 0.57025f};
|
||||
|
||||
for (int i = 0; i < output.size(); ++i) {
|
||||
EXPECT_NEAR(expected[i], output[i], 1e-4);
|
||||
}
|
||||
|
||||
cudaFree(d_input);
|
||||
cudaFree(d_output);
|
||||
}
|
||||
@@ -1,8 +1,20 @@
|
||||
import torch
|
||||
|
||||
def _conv2d(in_channels, out_channels, kernel_size, stride, padding, inputs, weights):
|
||||
|
||||
conv2d = torch.nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, bias=False)
|
||||
def _conv2d(in_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
stride,
|
||||
padding,
|
||||
inputs,
|
||||
weights):
|
||||
|
||||
conv2d = torch.nn.Conv2d(in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
kernel_size=kernel_size,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
bias=False)
|
||||
conv2d.weight = torch.nn.Parameter(weights)
|
||||
|
||||
output = conv2d(inputs)
|
||||
@@ -11,6 +23,7 @@ def _conv2d(in_channels, out_channels, kernel_size, stride, padding, inputs, wei
|
||||
output = torch.flatten(output)
|
||||
return output
|
||||
|
||||
|
||||
def _print_cpp_vector(vector):
|
||||
print("std::vector<float> expected = {", end="")
|
||||
for i in range(len(vector)):
|
||||
@@ -20,6 +33,19 @@ def _print_cpp_vector(vector):
|
||||
print("};")
|
||||
|
||||
|
||||
def _get_pool_input():
|
||||
return torch.tensor([
|
||||
0.573, 0.619, 0.732, 0.055,
|
||||
0.243, 0.316, 0.573, 0.619,
|
||||
0.712, 0.055, 0.243, 0.316,
|
||||
0.573, 0.619, 0.742, 0.055,
|
||||
0.473, 0.919, 0.107, 0.073,
|
||||
0.073, 0.362, 0.973, 0.059,
|
||||
0.473, 0.455, 0.283, 0.416,
|
||||
0.532, 0.819, 0.732, 0.850
|
||||
]).reshape(1, 2, 4, 4)
|
||||
|
||||
|
||||
def gen_convd_padded_test_result():
|
||||
|
||||
in_channels = 3
|
||||
@@ -68,9 +94,16 @@ def gen_convd_padded_test_result():
|
||||
0.011, 0.345, 0.678
|
||||
], dtype=torch.float).reshape(2, 3, 3, 3)
|
||||
|
||||
output = _conv2d(in_channels, out_channels, kernel_size, stride, padding, inputs, weights)
|
||||
output = _conv2d(in_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
stride,
|
||||
padding,
|
||||
inputs,
|
||||
weights)
|
||||
_print_cpp_vector(output)
|
||||
|
||||
|
||||
def gen_convd_strided_test_result():
|
||||
|
||||
in_channels = 2
|
||||
@@ -78,7 +111,7 @@ def gen_convd_strided_test_result():
|
||||
kernel_size = 3
|
||||
stride = 2
|
||||
padding = 3
|
||||
|
||||
|
||||
input = torch.tensor([
|
||||
0.946, 0.879, 0.382, 0.542, 0.453,
|
||||
0.128, 0.860, 0.778, 0.049, 0.974,
|
||||
@@ -106,9 +139,16 @@ def gen_convd_strided_test_result():
|
||||
0.939, 0.891, 0.006
|
||||
], dtype=torch.float).reshape(2, 2, 3, 3)
|
||||
|
||||
output = _conv2d(in_channels, out_channels, kernel_size, stride, padding, input, weights)
|
||||
output = _conv2d(in_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
stride,
|
||||
padding,
|
||||
input,
|
||||
weights)
|
||||
_print_cpp_vector(output)
|
||||
|
||||
|
||||
def gen_softmax_test_result():
|
||||
input = torch.tensor([
|
||||
0.573, 0.619, 0.732, 0.055, 0.243
|
||||
@@ -117,17 +157,9 @@ def gen_softmax_test_result():
|
||||
output = torch.nn.Softmax(dim=0)(input)
|
||||
_print_cpp_vector(output)
|
||||
|
||||
|
||||
def gen_max_pool_test_result():
|
||||
input = torch.tensor([
|
||||
0.573, 0.619, 0.732, 0.055,
|
||||
0.243, 0.316, 0.573, 0.619,
|
||||
0.712, 0.055, 0.243, 0.316,
|
||||
0.573, 0.619, 0.742, 0.055,
|
||||
0.473, 0.919, 0.107, 0.073,
|
||||
0.073, 0.362, 0.973, 0.059,
|
||||
0.473, 0.455, 0.283, 0.416,
|
||||
0.532, 0.819, 0.732, 0.850
|
||||
]).reshape(1, 2, 4, 4)
|
||||
input = _get_pool_input()
|
||||
|
||||
output = torch.nn.MaxPool2d(kernel_size=2, stride=2)(input)
|
||||
output = torch.flatten(output)
|
||||
@@ -135,13 +167,25 @@ def gen_max_pool_test_result():
|
||||
_print_cpp_vector(output)
|
||||
|
||||
|
||||
def gen_avg_pool_test_result():
|
||||
|
||||
input = _get_pool_input()
|
||||
|
||||
output = torch.nn.AvgPool2d(kernel_size=2, stride=2)(input)
|
||||
output = torch.flatten(output)
|
||||
|
||||
_print_cpp_vector(output)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# print("Generating test results...")
|
||||
# print("Padded convolution test:")
|
||||
# gen_convd_padded_test_result()
|
||||
# print("Strided convolution test:")
|
||||
# gen_convd_strided_test_result()
|
||||
# print("Softmax test:")
|
||||
# gen_softmax_test_result()
|
||||
print("Generating test results...")
|
||||
print("Padded convolution test:")
|
||||
gen_convd_padded_test_result()
|
||||
print("Strided convolution test:")
|
||||
gen_convd_strided_test_result()
|
||||
print("Softmax test:")
|
||||
gen_softmax_test_result()
|
||||
print("Max pool test:")
|
||||
gen_max_pool_test_result()
|
||||
gen_max_pool_test_result()
|
||||
print("Avg pool test:")
|
||||
gen_avg_pool_test_result()
|
||||
|
||||
Reference in New Issue
Block a user