mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-12-22 22:34:22 +00:00
Add avgPool2d implementation
This commit is contained in:
@@ -62,6 +62,16 @@ class Backend {
|
|||||||
CUDANet::Shape padding_shape,
|
CUDANet::Shape padding_shape,
|
||||||
CUDANet::Shape output_shape
|
CUDANet::Shape output_shape
|
||||||
) = 0;
|
) = 0;
|
||||||
|
|
||||||
|
virtual CUDANet::Tensor& avgPool2d(
|
||||||
|
const CUDANet::Tensor& input,
|
||||||
|
CUDANet::Tensor& output,
|
||||||
|
CUDANet::Shape input_shape,
|
||||||
|
CUDANet::Shape pool_shape,
|
||||||
|
CUDANet::Shape stride_shape,
|
||||||
|
CUDANet::Shape padding_shape,
|
||||||
|
CUDANet::Shape output_shape
|
||||||
|
) = 0;
|
||||||
};
|
};
|
||||||
|
|
||||||
} // namespace CUDANet
|
} // namespace CUDANet
|
||||||
@@ -49,7 +49,7 @@ class CUDA : public Backend {
|
|||||||
const CUDANet::Shape out_shape
|
const CUDANet::Shape out_shape
|
||||||
) override;
|
) override;
|
||||||
|
|
||||||
CUDANet::Tensor& CUDA::maxPool2d(
|
CUDANet::Tensor& maxPool2d(
|
||||||
const CUDANet::Tensor& input,
|
const CUDANet::Tensor& input,
|
||||||
CUDANet::Tensor& output,
|
CUDANet::Tensor& output,
|
||||||
CUDANet::Shape input_shape,
|
CUDANet::Shape input_shape,
|
||||||
@@ -58,6 +58,16 @@ class CUDA : public Backend {
|
|||||||
CUDANet::Shape padding_shape,
|
CUDANet::Shape padding_shape,
|
||||||
CUDANet::Shape output_shape
|
CUDANet::Shape output_shape
|
||||||
) override;
|
) override;
|
||||||
|
|
||||||
|
CUDANet::Tensor& avgPool2d(
|
||||||
|
const CUDANet::Tensor& input,
|
||||||
|
CUDANet::Tensor& output,
|
||||||
|
CUDANet::Shape input_shape,
|
||||||
|
CUDANet::Shape pool_shape,
|
||||||
|
CUDANet::Shape stride_shape,
|
||||||
|
CUDANet::Shape padding_shape,
|
||||||
|
CUDANet::Shape output_shape
|
||||||
|
) = 0;
|
||||||
};
|
};
|
||||||
|
|
||||||
} // namespace CUDANet::Backend
|
} // namespace CUDANet::Backend
|
||||||
@@ -1,6 +1,6 @@
|
|||||||
#include "cuda_helper.cuh"
|
#include "cuda_helper.cuh"
|
||||||
#include "layer.hpp"
|
#include "layer.hpp"
|
||||||
#include "pooling.cuh"
|
#include "pool.cuh"
|
||||||
|
|
||||||
using namespace CUDANet;
|
using namespace CUDANet;
|
||||||
|
|
||||||
@@ -137,3 +137,29 @@ CUDANet::Tensor& CUDA::maxPool2d(
|
|||||||
|
|
||||||
return output;
|
return output;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
CUDANet::Tensor& CUDA::avgPool2d(
|
||||||
|
const CUDANet::Tensor& input,
|
||||||
|
CUDANet::Tensor& output,
|
||||||
|
CUDANet::Shape input_shape,
|
||||||
|
CUDANet::Shape pool_shape,
|
||||||
|
CUDANet::Shape stride_shape,
|
||||||
|
CUDANet::Shape padding_shape,
|
||||||
|
CUDANet::Shape output_shape
|
||||||
|
) {
|
||||||
|
dim3 block(8, 8, 8);
|
||||||
|
dim3 grid(
|
||||||
|
(output_shape[0] + block.x - 1) / block.x,
|
||||||
|
(output_shape[1] + block.y - 1) / block.y,
|
||||||
|
(output_shape[2] + block.z - 1) / block.z
|
||||||
|
);
|
||||||
|
|
||||||
|
Kernels::avg_pool<<<grid, block>>>(
|
||||||
|
input.data<float>(), output.data<float>(), input_shape, output_shape, pool_shape,
|
||||||
|
stride_shape, padding_shape
|
||||||
|
);
|
||||||
|
CUDA_CHECK(cudaGetLastError());
|
||||||
|
CUDA_CHECK(cudaDeviceSynchronize());
|
||||||
|
|
||||||
|
return output;
|
||||||
|
}
|
||||||
@@ -1,45 +0,0 @@
|
|||||||
#include "avg_pooling.hpp"
|
|
||||||
#include "cuda_helper.cuh"
|
|
||||||
#include "pooling.cuh"
|
|
||||||
|
|
||||||
using namespace CUDANet::Layers;
|
|
||||||
|
|
||||||
void AvgPooling2d::initCUDA() {
|
|
||||||
d_output = nullptr;
|
|
||||||
CUDA_CHECK(cudaMalloc(
|
|
||||||
(void**)&d_output,
|
|
||||||
sizeof(float) * outputSize.first * outputSize.second * nChannels
|
|
||||||
));
|
|
||||||
}
|
|
||||||
|
|
||||||
void AvgPooling2d::delCUDA() {
|
|
||||||
cudaFree(d_output);
|
|
||||||
}
|
|
||||||
|
|
||||||
float* AvgPooling2d::forwardCUDA(const float* d_input) {
|
|
||||||
dim3 block(8, 8, 8);
|
|
||||||
dim3 grid(
|
|
||||||
(outputSize.first + block.x - 1) / block.x,
|
|
||||||
(outputSize.second + block.y - 1) / block.y,
|
|
||||||
(nChannels + block.z - 1) / block.z
|
|
||||||
);
|
|
||||||
|
|
||||||
Kernels::avg_pooling<<<grid, block>>>(
|
|
||||||
d_input, d_output, inputSize, outputSize, nChannels, poolingSize,
|
|
||||||
stride, padding
|
|
||||||
);
|
|
||||||
CUDA_CHECK(cudaGetLastError());
|
|
||||||
|
|
||||||
activation->activate(d_output);
|
|
||||||
CUDA_CHECK(cudaDeviceSynchronize());
|
|
||||||
|
|
||||||
return d_output;
|
|
||||||
}
|
|
||||||
|
|
||||||
void AdaptiveAvgPooling2d::initCUDA() {
|
|
||||||
cudaFree(d_output);
|
|
||||||
cudaMalloc(
|
|
||||||
(void**)&d_output,
|
|
||||||
sizeof(float) * outputSize.first * outputSize.second * nChannels
|
|
||||||
);
|
|
||||||
}
|
|
||||||
@@ -49,23 +49,43 @@ AvgPool2d::AvgPool2d(
|
|||||||
|
|
||||||
AvgPool2d::~AvgPool2d() {}
|
AvgPool2d::~AvgPool2d() {}
|
||||||
|
|
||||||
CUDANet::Tensor& AvgPool2d::forward(CUDANet::Tensor& input);
|
CUDANet::Tensor& AvgPool2d::forward(CUDANet::Tensor& input) {
|
||||||
|
output.zero();
|
||||||
|
backend->avgPool2d(
|
||||||
|
input,
|
||||||
|
output,
|
||||||
|
in_shape,
|
||||||
|
pool_shape,
|
||||||
|
stride_shape,
|
||||||
|
padding_shape,
|
||||||
|
out_shape
|
||||||
|
);
|
||||||
|
return output;
|
||||||
|
}
|
||||||
|
|
||||||
CUDANet::Shape AvgPool2d::input_shape();
|
CUDANet::Shape AvgPool2d::input_shape() {
|
||||||
|
return in_shape;
|
||||||
|
}
|
||||||
|
|
||||||
CUDANet::Shape AvgPool2d::output_shape();
|
CUDANet::Shape AvgPool2d::output_shape() {
|
||||||
|
return out_shape;
|
||||||
|
}
|
||||||
|
|
||||||
size_t AvgPool2d::input_size();
|
size_t AvgPool2d::input_size() {
|
||||||
|
return sizeof(float) * in_shape[0] * in_shape[1] * in_shape[2];
|
||||||
|
}
|
||||||
|
|
||||||
size_t AvgPool2d::output_size();
|
size_t AvgPool2d::output_size() {
|
||||||
|
return sizeof(float) * out_shape[0] * out_shape[1] * out_shape[3];
|
||||||
|
}
|
||||||
|
|
||||||
void AvgPool2d::set_weights(void* input);
|
void AvgPool2d::set_weights(void* input) {}
|
||||||
|
|
||||||
CUDANet::Tensor& AvgPool2d::get_weights();
|
CUDANet::Tensor& AvgPool2d::get_weights() {}
|
||||||
|
|
||||||
void AvgPool2d::set_biases(void* input);
|
void AvgPool2d::set_biases(void* input) {}
|
||||||
|
|
||||||
CUDANet::Tensor& AvgPool2d::get_biases();
|
CUDANet::Tensor& AvgPool2d::get_biases() {}
|
||||||
|
|
||||||
|
|
||||||
AdaptiveAvgPool2d::AdaptiveAvgPool2d(
|
AdaptiveAvgPool2d::AdaptiveAvgPool2d(
|
||||||
@@ -73,15 +93,29 @@ AdaptiveAvgPool2d::AdaptiveAvgPool2d(
|
|||||||
CUDANet::Shape output_shape,
|
CUDANet::Shape output_shape,
|
||||||
CUDANet::Backend *backend
|
CUDANet::Backend *backend
|
||||||
)
|
)
|
||||||
: AvgPool2d(input_shape, {1, 1}, {1, 1}, {0, 0}, backend) {
|
: AvgPool2d(
|
||||||
stride_shape = {
|
input_shape,
|
||||||
|
// pool_shape
|
||||||
|
{
|
||||||
|
input_shape[0] - (output_shape[0] - 1) * (input_shape[0] / output_shape[0]),
|
||||||
|
input_shape[1] - (output_shape[1] - 1) * (input_shape[1] / output_shape[1])
|
||||||
|
},
|
||||||
|
// stride_shape
|
||||||
|
{
|
||||||
input_shape[0] / output_shape[0],
|
input_shape[0] / output_shape[0],
|
||||||
input_shape[1] / output_shape[1]
|
input_shape[1] / output_shape[1]
|
||||||
};
|
},
|
||||||
pool_shape = {
|
// padding_shape
|
||||||
input_shape[0] - (output_shape[0] - 1) * stride_shape[0],
|
{
|
||||||
input_shape[1] - (output_shape[1] - 1) * stride_shape[1]
|
(input_shape[0] - (output_shape[0] - 1) * (input_shape[0] / output_shape[0]) - 1) / 2,
|
||||||
};
|
(input_shape[1] - (output_shape[1] - 1) * (input_shape[1] / output_shape[1]) - 1) / 2
|
||||||
padding_shape = {(pool_shape[0] - 1) / 2, (pool_shape[1] - 1) / 2};
|
},
|
||||||
|
backend
|
||||||
|
) {
|
||||||
out_shape = output_shape;
|
out_shape = output_shape;
|
||||||
|
|
||||||
|
output = CUDANet::Tensor(
|
||||||
|
Shape{out_shape[0] * out_shape[1] * out_shape[2]},
|
||||||
|
CUDANet::DType::FLOAT32, backend
|
||||||
|
);
|
||||||
}
|
}
|
||||||
Reference in New Issue
Block a user