mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-05 17:34:21 +00:00
Implement device vector utils
This commit is contained in:
@@ -103,12 +103,6 @@ __global__ void sum_reduce(
|
||||
const unsigned int len
|
||||
);
|
||||
|
||||
|
||||
__global__ void clear(
|
||||
float* __restrict__ d_vector,
|
||||
const unsigned int len
|
||||
);
|
||||
|
||||
} // namespace CUDANet::Kernels
|
||||
|
||||
#endif // CUDANET_MATMUL_H
|
||||
44
include/utils/vector.cuh
Normal file
44
include/utils/vector.cuh
Normal file
@@ -0,0 +1,44 @@
|
||||
#ifndef CUDANET_VECTOR_H
|
||||
#define CUDANET_VECTOR_H
|
||||
|
||||
namespace CUDANet::Utils {
|
||||
|
||||
|
||||
/**
|
||||
* @brief Utility function that prints a vector
|
||||
*
|
||||
* @param d_vec Pointer to the vector on device
|
||||
* @param length Length of the vector
|
||||
*/
|
||||
void print_vec(float *d_vec, const unsigned int length);
|
||||
|
||||
/**
|
||||
* @brief Utility function that clears a vector
|
||||
*
|
||||
* @param d_vector Pointer to the vector on device
|
||||
* @param len Length of the vector
|
||||
*/
|
||||
void clear(float *d_vector, const unsigned int len);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Utility function that returns the sum of a vector
|
||||
*
|
||||
* @param d_vec Pointer to the vector
|
||||
* @param length Length of the vector
|
||||
*/
|
||||
void sum(float *d_vec, float *d_sum, const unsigned int length);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Utility function that returns the max of a vector
|
||||
*
|
||||
* @param d_vec Pointer to the vector
|
||||
* @param length Length of the vector
|
||||
*/
|
||||
void max(float *d_vec, float *d_max, const unsigned int length);
|
||||
|
||||
|
||||
} // namespace CUDANet::Utils
|
||||
|
||||
#endif // CUDANET_VECTOR_H
|
||||
@@ -95,18 +95,6 @@ __global__ void Kernels::vec_exp(
|
||||
}
|
||||
|
||||
|
||||
__global__ void Kernels::clear(
|
||||
float* __restrict__ d_vector,
|
||||
const unsigned int w
|
||||
) {
|
||||
int tid = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
if (tid >= w) {
|
||||
return;
|
||||
}
|
||||
d_vector[tid] = 0.0f;
|
||||
}
|
||||
|
||||
|
||||
__global__ void Kernels::max_reduce(
|
||||
const float* __restrict__ d_vector,
|
||||
float* __restrict__ d_output,
|
||||
|
||||
@@ -5,6 +5,7 @@
|
||||
#include <functional>
|
||||
#include <iostream>
|
||||
|
||||
#include "vector.cuh"
|
||||
#include "activation.cuh"
|
||||
#include "cuda_helper.cuh"
|
||||
#include "dense.cuh"
|
||||
@@ -63,6 +64,9 @@ void Dense::initializeBiases() {
|
||||
}
|
||||
|
||||
float* Dense::forward(const float* d_input) {
|
||||
|
||||
CUDANet::Utils::clear(d_output, outputSize);
|
||||
|
||||
Kernels::mat_vec_mul<<<forwardGridSize, BLOCK_SIZE>>>(
|
||||
d_weights, d_input, d_output, inputSize, outputSize
|
||||
);
|
||||
|
||||
58
src/utils/vector.cu
Normal file
58
src/utils/vector.cu
Normal file
@@ -0,0 +1,58 @@
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
|
||||
#include "vector.cuh"
|
||||
#include "matmul.cuh"
|
||||
#include "cuda_helper.cuh"
|
||||
|
||||
using namespace CUDANet;
|
||||
|
||||
void Utils::print_vec(float* d_vec, const unsigned int length) {
|
||||
std::vector<float> h_vec(length);
|
||||
CUDA_CHECK(cudaMemcpy(
|
||||
h_vec.data(), d_vec, sizeof(float) * length, cudaMemcpyDeviceToHost
|
||||
));
|
||||
|
||||
for (int i = 0; i < length; ++i) {
|
||||
std::cout << h_vec[i] << ", ";
|
||||
}
|
||||
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
void Utils::clear(float* d_vec, const unsigned int length) {
|
||||
CUDA_CHECK(cudaMemset(d_vec, 0, sizeof(float) * length));
|
||||
}
|
||||
|
||||
void Utils::max(float* d_vec, float* d_max, const unsigned int length) {
|
||||
|
||||
const int grid_size = (length + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
|
||||
Kernels::max_reduce<<<grid_size, BLOCK_SIZE>>>(d_vec, d_max, length);
|
||||
|
||||
int remaining = grid_size;
|
||||
while (remaining > 1) {
|
||||
int blocks_needed = (remaining + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
CUDANet::Kernels::max_reduce<<<blocks_needed, BLOCK_SIZE>>>(d_max, d_max, remaining);
|
||||
remaining = blocks_needed;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void Utils::sum(float* d_vec, float* d_sum, const unsigned int length) {
|
||||
|
||||
const int gridSize = (length + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
|
||||
|
||||
CUDANet::Kernels::sum_reduce<<<gridSize, BLOCK_SIZE>>>(
|
||||
d_vec, d_sum, length
|
||||
);
|
||||
|
||||
int remaining = gridSize;
|
||||
while (remaining > 1) {
|
||||
std::cout << remaining << std::endl;
|
||||
int blocks_needed = (remaining + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
CUDANet::Kernels::sum_reduce<<<blocks_needed, BLOCK_SIZE>>>(d_sum, d_sum, remaining);
|
||||
remaining = blocks_needed;
|
||||
}
|
||||
}
|
||||
@@ -4,6 +4,7 @@
|
||||
#include <vector>
|
||||
|
||||
#include "cuda_helper.cuh"
|
||||
#include "vector.cuh"
|
||||
#include "matmul.cuh"
|
||||
|
||||
TEST(MatMulTest, MatVecMulTest) {
|
||||
@@ -45,7 +46,7 @@ TEST(MatMulTest, MatVecMulTest) {
|
||||
int THREADS_PER_BLOCK = std::max(w, h);
|
||||
int BLOCKS = 1;
|
||||
|
||||
CUDANet::Kernels::clear<<<BLOCKS, h>>>(d_output, h);
|
||||
CUDANet::Utils::clear(d_output, h);
|
||||
|
||||
CUDANet::Kernels::mat_vec_mul<<<BLOCKS, THREADS_PER_BLOCK, sizeof(float) * w>>>(d_matrix, d_vector, d_output, w, h);
|
||||
cudaStatus = cudaDeviceSynchronize();
|
||||
@@ -198,6 +199,7 @@ TEST(MatMulTest, SumReduceTest) {
|
||||
remaining = blocks_needed;
|
||||
}
|
||||
|
||||
|
||||
std::vector<float> sum(n);
|
||||
cudaStatus = cudaMemcpy(
|
||||
sum.data(), d_sum, sizeof(float) * n, cudaMemcpyDeviceToHost
|
||||
|
||||
Reference in New Issue
Block a user