mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-06 17:54:27 +00:00
Fix alexnet
This commit is contained in:
@@ -32,7 +32,7 @@ readAndNormalizeImage(const std::string &imagePath, int width, int height) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
CUDANet::Model *createModel(
|
CUDANet::Model *createModel(
|
||||||
const int inputSize,
|
const dim2d inputSize,
|
||||||
const int inputChannels,
|
const int inputChannels,
|
||||||
const int outputSize
|
const int outputSize
|
||||||
) {
|
) {
|
||||||
@@ -41,44 +41,44 @@ CUDANet::Model *createModel(
|
|||||||
|
|
||||||
// Block 1
|
// Block 1
|
||||||
CUDANet::Layers::Conv2d *conv1 = new CUDANet::Layers::Conv2d(
|
CUDANet::Layers::Conv2d *conv1 = new CUDANet::Layers::Conv2d(
|
||||||
inputSize, inputChannels, 11, 4, 64, 2,
|
inputSize, inputChannels, {11, 11}, {4, 4}, 64, {2, 2},
|
||||||
CUDANet::Layers::ActivationType::RELU
|
CUDANet::Layers::ActivationType::RELU
|
||||||
);
|
);
|
||||||
model->addLayer("features.0", conv1); // Match pytorch naming
|
model->addLayer("features.0", conv1); // Match pytorch naming
|
||||||
CUDANet::Layers::MaxPooling2d *pool1 = new CUDANet::Layers::MaxPooling2d(
|
CUDANet::Layers::MaxPooling2d *pool1 = new CUDANet::Layers::MaxPooling2d(
|
||||||
56, 64, 3, 2, CUDANet::Layers::ActivationType::NONE
|
{56, 56}, 64, {3, 3}, {2, 2}, {0, 0}, CUDANet::Layers::ActivationType::NONE
|
||||||
);
|
);
|
||||||
model->addLayer("pool1", pool1);
|
model->addLayer("pool1", pool1);
|
||||||
|
|
||||||
// Block 2
|
// Block 2
|
||||||
CUDANet::Layers::Conv2d *conv2 = new CUDANet::Layers::Conv2d(
|
CUDANet::Layers::Conv2d *conv2 = new CUDANet::Layers::Conv2d(
|
||||||
27, 64, 5, 1, 192, 2, CUDANet::Layers::ActivationType::RELU
|
{27, 27}, 64, {5, 5}, {1, 1}, 192, {2, 2}, CUDANet::Layers::ActivationType::RELU
|
||||||
);
|
);
|
||||||
model->addLayer("features.3", conv2);
|
model->addLayer("features.3", conv2);
|
||||||
CUDANet::Layers::MaxPooling2d *pool2 = new CUDANet::Layers::MaxPooling2d(
|
CUDANet::Layers::MaxPooling2d *pool2 = new CUDANet::Layers::MaxPooling2d(
|
||||||
27, 192, 3, 2, CUDANet::Layers::ActivationType::NONE
|
{27, 27}, 192, {3, 3}, {2, 2}, {0, 0}, CUDANet::Layers::ActivationType::NONE
|
||||||
);
|
);
|
||||||
model->addLayer("pool2", pool2);
|
model->addLayer("pool2", pool2);
|
||||||
|
|
||||||
// Block 3
|
// Block 3
|
||||||
CUDANet::Layers::Conv2d *conv3 = new CUDANet::Layers::Conv2d(
|
CUDANet::Layers::Conv2d *conv3 = new CUDANet::Layers::Conv2d(
|
||||||
13, 192, 3, 1, 384, 1, CUDANet::Layers::ActivationType::RELU
|
{13, 13}, 192, {3, 3}, {1, 1}, 384, {1, 1}, CUDANet::Layers::ActivationType::RELU
|
||||||
);
|
);
|
||||||
model->addLayer("features.6", conv3);
|
model->addLayer("features.6", conv3);
|
||||||
|
|
||||||
// Block 4
|
// Block 4
|
||||||
CUDANet::Layers::Conv2d *conv4 = new CUDANet::Layers::Conv2d(
|
CUDANet::Layers::Conv2d *conv4 = new CUDANet::Layers::Conv2d(
|
||||||
13, 384, 3, 1, 256, 1, CUDANet::Layers::ActivationType::RELU
|
{13, 13}, 384, {3, 3}, {1, 1}, 256, {1, 1}, CUDANet::Layers::ActivationType::RELU
|
||||||
);
|
);
|
||||||
model->addLayer("features.8", conv4);
|
model->addLayer("features.8", conv4);
|
||||||
|
|
||||||
// Block 5
|
// Block 5
|
||||||
CUDANet::Layers::Conv2d *conv5 = new CUDANet::Layers::Conv2d(
|
CUDANet::Layers::Conv2d *conv5 = new CUDANet::Layers::Conv2d(
|
||||||
13, 256, 3, 1, 256, 1, CUDANet::Layers::ActivationType::RELU
|
{13, 13}, 256, {3, 3}, {1, 1}, 256, {1, 1}, CUDANet::Layers::ActivationType::RELU
|
||||||
);
|
);
|
||||||
model->addLayer("features.10", conv5);
|
model->addLayer("features.10", conv5);
|
||||||
CUDANet::Layers::MaxPooling2d *pool5 = new CUDANet::Layers::MaxPooling2d(
|
CUDANet::Layers::MaxPooling2d *pool5 = new CUDANet::Layers::MaxPooling2d(
|
||||||
13, 256, 3, 2, CUDANet::Layers::ActivationType::NONE
|
{13, 13}, 256, {3, 3}, {2, 2}, {0, 0}, CUDANet::Layers::ActivationType::NONE
|
||||||
);
|
);
|
||||||
model->addLayer("pool5", pool5);
|
model->addLayer("pool5", pool5);
|
||||||
|
|
||||||
@@ -112,7 +112,7 @@ int main(int argc, const char *const argv[]) {
|
|||||||
std::string modelWeightsPath = argv[1];
|
std::string modelWeightsPath = argv[1];
|
||||||
std::string imagePath = argv[2];
|
std::string imagePath = argv[2];
|
||||||
|
|
||||||
const int inputSize = 227;
|
const dim2d inputSize = {227, 227};
|
||||||
const int inputChannels = 3;
|
const int inputChannels = 3;
|
||||||
const int outputSize = 1000;
|
const int outputSize = 1000;
|
||||||
|
|
||||||
@@ -124,10 +124,10 @@ int main(int argc, const char *const argv[]) {
|
|||||||
|
|
||||||
// Read and normalize the image
|
// Read and normalize the image
|
||||||
std::vector<float> imageData =
|
std::vector<float> imageData =
|
||||||
readAndNormalizeImage(imagePath, inputSize, inputSize);
|
readAndNormalizeImage(imagePath, inputSize.first, inputSize.second);
|
||||||
|
|
||||||
// Print the size of the image data
|
// Print the size of the image data
|
||||||
float *output = model->predict(imageData.data());
|
const float *output = model->predict(imageData.data());
|
||||||
|
|
||||||
// Get max index
|
// Get max index
|
||||||
int maxIndex = 0;
|
int maxIndex = 0;
|
||||||
|
|||||||
Reference in New Issue
Block a user