diff --git a/examples/alexnet/alexnet.cpp b/examples/alexnet/alexnet.cpp index fd61c79..4a90abd 100644 --- a/examples/alexnet/alexnet.cpp +++ b/examples/alexnet/alexnet.cpp @@ -32,7 +32,7 @@ readAndNormalizeImage(const std::string &imagePath, int width, int height) { } CUDANet::Model *createModel( - const int inputSize, + const dim2d inputSize, const int inputChannels, const int outputSize ) { @@ -41,44 +41,44 @@ CUDANet::Model *createModel( // Block 1 CUDANet::Layers::Conv2d *conv1 = new CUDANet::Layers::Conv2d( - inputSize, inputChannels, 11, 4, 64, 2, + inputSize, inputChannels, {11, 11}, {4, 4}, 64, {2, 2}, CUDANet::Layers::ActivationType::RELU ); model->addLayer("features.0", conv1); // Match pytorch naming CUDANet::Layers::MaxPooling2d *pool1 = new CUDANet::Layers::MaxPooling2d( - 56, 64, 3, 2, CUDANet::Layers::ActivationType::NONE + {56, 56}, 64, {3, 3}, {2, 2}, {0, 0}, CUDANet::Layers::ActivationType::NONE ); model->addLayer("pool1", pool1); // Block 2 CUDANet::Layers::Conv2d *conv2 = new CUDANet::Layers::Conv2d( - 27, 64, 5, 1, 192, 2, CUDANet::Layers::ActivationType::RELU + {27, 27}, 64, {5, 5}, {1, 1}, 192, {2, 2}, CUDANet::Layers::ActivationType::RELU ); model->addLayer("features.3", conv2); CUDANet::Layers::MaxPooling2d *pool2 = new CUDANet::Layers::MaxPooling2d( - 27, 192, 3, 2, CUDANet::Layers::ActivationType::NONE + {27, 27}, 192, {3, 3}, {2, 2}, {0, 0}, CUDANet::Layers::ActivationType::NONE ); model->addLayer("pool2", pool2); // Block 3 CUDANet::Layers::Conv2d *conv3 = new CUDANet::Layers::Conv2d( - 13, 192, 3, 1, 384, 1, CUDANet::Layers::ActivationType::RELU + {13, 13}, 192, {3, 3}, {1, 1}, 384, {1, 1}, CUDANet::Layers::ActivationType::RELU ); model->addLayer("features.6", conv3); // Block 4 CUDANet::Layers::Conv2d *conv4 = new CUDANet::Layers::Conv2d( - 13, 384, 3, 1, 256, 1, CUDANet::Layers::ActivationType::RELU + {13, 13}, 384, {3, 3}, {1, 1}, 256, {1, 1}, CUDANet::Layers::ActivationType::RELU ); model->addLayer("features.8", conv4); // Block 5 CUDANet::Layers::Conv2d *conv5 = new CUDANet::Layers::Conv2d( - 13, 256, 3, 1, 256, 1, CUDANet::Layers::ActivationType::RELU + {13, 13}, 256, {3, 3}, {1, 1}, 256, {1, 1}, CUDANet::Layers::ActivationType::RELU ); model->addLayer("features.10", conv5); CUDANet::Layers::MaxPooling2d *pool5 = new CUDANet::Layers::MaxPooling2d( - 13, 256, 3, 2, CUDANet::Layers::ActivationType::NONE + {13, 13}, 256, {3, 3}, {2, 2}, {0, 0}, CUDANet::Layers::ActivationType::NONE ); model->addLayer("pool5", pool5); @@ -112,7 +112,7 @@ int main(int argc, const char *const argv[]) { std::string modelWeightsPath = argv[1]; std::string imagePath = argv[2]; - const int inputSize = 227; + const dim2d inputSize = {227, 227}; const int inputChannels = 3; const int outputSize = 1000; @@ -124,10 +124,10 @@ int main(int argc, const char *const argv[]) { // Read and normalize the image std::vector imageData = - readAndNormalizeImage(imagePath, inputSize, inputSize); + readAndNormalizeImage(imagePath, inputSize.first, inputSize.second); // Print the size of the image data - float *output = model->predict(imageData.data()); + const float *output = model->predict(imageData.data()); // Get max index int maxIndex = 0;