mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-05 17:34:21 +00:00
Creating torch predict function
This commit is contained in:
@@ -2,9 +2,11 @@ import numpy as np
|
||||
import utils
|
||||
from sys import argv
|
||||
|
||||
|
||||
def gen_random_vector(size):
|
||||
return np.random.rand(size)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
if len(argv) < 2:
|
||||
@@ -12,4 +14,4 @@ if __name__ == "__main__":
|
||||
exit(1)
|
||||
|
||||
vector = gen_random_vector(int(argv[1]))
|
||||
utils.print_cpp_vector(vector)
|
||||
utils.print_cpp_vector(vector)
|
||||
|
||||
@@ -1,7 +1,9 @@
|
||||
import torch
|
||||
import struct
|
||||
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
from torchvision import transforms
|
||||
|
||||
|
||||
def print_cpp_vector(vector, name="expected"):
|
||||
@@ -14,7 +16,7 @@ def print_cpp_vector(vector, name="expected"):
|
||||
|
||||
|
||||
def export_model_weights(model: torch.nn.Module, filename):
|
||||
with open(filename, 'wb') as f:
|
||||
with open(filename, "wb") as f:
|
||||
|
||||
version = 1
|
||||
header = ""
|
||||
@@ -22,23 +24,54 @@ def export_model_weights(model: torch.nn.Module, filename):
|
||||
tensor_data = b""
|
||||
|
||||
for name, param in model.named_parameters():
|
||||
if 'weight' not in name and 'bias' not in name:
|
||||
if "weight" not in name and "bias" not in name:
|
||||
continue
|
||||
|
||||
tensor_bytes = param.type(torch.float32).detach().numpy().tobytes()
|
||||
tensor_size = param.numel()
|
||||
|
||||
header += f"{name},{tensor_size},{offset}\n"
|
||||
header += f"{name},{tensor_size},{offset}\n"
|
||||
offset += len(tensor_bytes)
|
||||
|
||||
tensor_data += tensor_bytes
|
||||
|
||||
f.seek(0)
|
||||
f.write(struct.pack('H', version))
|
||||
f.write(struct.pack('Q', len(header)))
|
||||
f.write(header.encode('utf-8'))
|
||||
f.write(struct.pack("H", version))
|
||||
f.write(struct.pack("Q", len(header)))
|
||||
f.write(header.encode("utf-8"))
|
||||
f.write(tensor_data)
|
||||
|
||||
|
||||
def print_model_parameters(model: torch.nn.Module):
|
||||
for name, param in model.named_parameters():
|
||||
print(name, param.numel())
|
||||
|
||||
|
||||
def predict(model, image_path, preprocess=None):
|
||||
input_image = Image.open(image_path)
|
||||
|
||||
if preprocess is None:
|
||||
preprocess = transforms.Compose(
|
||||
[
|
||||
transforms.Resize(299),
|
||||
transforms.CenterCrop(299),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize(
|
||||
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
input_tensor = preprocess(input_image)
|
||||
input_batch = input_tensor.unsqueeze(
|
||||
0
|
||||
) # create a mini-batch as expected by the model
|
||||
|
||||
# move the input and model to GPU for speed if available
|
||||
if torch.cuda.is_available():
|
||||
input_batch = input_batch.to("cuda")
|
||||
model.to("cuda")
|
||||
|
||||
with torch.no_grad():
|
||||
output = model(input_batch)
|
||||
return torch.argmax(output)
|
||||
|
||||
Reference in New Issue
Block a user