mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-06 01:34:22 +00:00
Cleanup and refactor
This commit is contained in:
@@ -28,7 +28,7 @@ class Activation {
|
||||
* @param activation Type of activation
|
||||
* @param length Length of the input
|
||||
*/
|
||||
Activation(ActivationType activation, const unsigned int length);
|
||||
Activation(ActivationType activation, const int length);
|
||||
|
||||
/**
|
||||
* @brief Destroy the Activation object
|
||||
@@ -46,8 +46,8 @@ class Activation {
|
||||
|
||||
private:
|
||||
ActivationType activationType;
|
||||
unsigned int length;
|
||||
unsigned int gridSize;
|
||||
int length;
|
||||
int gridSize;
|
||||
|
||||
float* d_softmax_sum;
|
||||
float* d_max;
|
||||
|
||||
@@ -1,23 +1,22 @@
|
||||
#include "activation.cuh"
|
||||
|
||||
#include "cuda_helper.cuh"
|
||||
#include "activation_functions.cuh"
|
||||
#include "matmul.cuh"
|
||||
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
|
||||
#include "activation.cuh"
|
||||
#include "activation_functions.cuh"
|
||||
#include "cuda_helper.cuh"
|
||||
#include "matmul.cuh"
|
||||
#include "vector.cuh"
|
||||
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
Activation::Activation(ActivationType activation, const unsigned int length)
|
||||
Activation::Activation(ActivationType activation, const int length)
|
||||
: activationType(activation), length(length) {
|
||||
|
||||
if (activationType == SOFTMAX) {
|
||||
d_softmax_sum = nullptr;
|
||||
CUDA_CHECK(cudaMalloc((void**)&d_softmax_sum, sizeof(float) * length));
|
||||
|
||||
d_max = nullptr;
|
||||
CUDA_CHECK(cudaMalloc((void**)&d_max, sizeof(float) * length));
|
||||
|
||||
d_softmax_sum = nullptr;
|
||||
CUDA_CHECK(cudaMalloc((void**)&d_softmax_sum, sizeof(float) * length));
|
||||
}
|
||||
|
||||
gridSize = (length + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
@@ -26,10 +25,13 @@ Activation::Activation(ActivationType activation, const unsigned int length)
|
||||
Activation::~Activation() {
|
||||
if (activationType == SOFTMAX) {
|
||||
cudaFree(d_softmax_sum);
|
||||
cudaFree(d_max);
|
||||
}
|
||||
}
|
||||
|
||||
void Activation::activate(float* __restrict__ d_input) {
|
||||
void Activation::activate(float* d_input) {
|
||||
|
||||
// float sum = 0.0f;
|
||||
|
||||
switch (activationType) {
|
||||
case SIGMOID:
|
||||
@@ -39,44 +41,36 @@ void Activation::activate(float* __restrict__ d_input) {
|
||||
break;
|
||||
|
||||
case RELU:
|
||||
Kernels::relu<<<gridSize, BLOCK_SIZE>>>(
|
||||
d_input, d_input, length
|
||||
);
|
||||
Kernels::relu<<<gridSize, BLOCK_SIZE>>>(d_input, d_input, length);
|
||||
break;
|
||||
case SOFTMAX:
|
||||
|
||||
// Find max value
|
||||
Kernels::max_reduce<<<gridSize, BLOCK_SIZE>>>(
|
||||
d_input, d_max
|
||||
);
|
||||
Kernels::max_reduce<<<1, BLOCK_SIZE>>>(
|
||||
d_max, d_max
|
||||
);
|
||||
Utils::max(d_input, d_max, length);
|
||||
|
||||
// Subtract max value to improve numerical stability
|
||||
Kernels::vec_scalar_sub<<<gridSize, BLOCK_SIZE>>>(
|
||||
d_input, d_max, d_input, length
|
||||
d_input, d_input, d_max, length
|
||||
);
|
||||
|
||||
// Compute softmax
|
||||
Kernels::softmax_exp<<<gridSize, BLOCK_SIZE>>>(
|
||||
// Compute exponentials
|
||||
Kernels::vec_exp<<<gridSize, BLOCK_SIZE>>>(
|
||||
d_input, d_input, length
|
||||
);
|
||||
|
||||
Kernels::softmax_sum<<<gridSize, BLOCK_SIZE>>>(
|
||||
d_input, d_softmax_sum
|
||||
);
|
||||
// Find sum
|
||||
Utils::sum(d_input, d_softmax_sum, length);
|
||||
|
||||
Kernels::softmax_sum<<<1, BLOCK_SIZE>>>(
|
||||
d_softmax_sum, d_softmax_sum
|
||||
);
|
||||
|
||||
Kernels::softmax_div<<<gridSize, BLOCK_SIZE>>>(
|
||||
Kernels::vec_scalar_div<<<gridSize, BLOCK_SIZE>>>(
|
||||
d_input, d_input, d_softmax_sum, length
|
||||
);
|
||||
|
||||
break;
|
||||
|
||||
default:
|
||||
break;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
cudaDeviceSynchronize();
|
||||
}
|
||||
|
||||
|
||||
@@ -23,8 +23,6 @@ Dense::Dense(
|
||||
weights.resize(outputSize * inputSize);
|
||||
biases.resize(outputSize);
|
||||
|
||||
activation = Activation(activationType, outputSize);
|
||||
|
||||
initializeWeights();
|
||||
initializeBiases();
|
||||
|
||||
@@ -46,6 +44,8 @@ Dense::Dense(
|
||||
forwardGridSize =
|
||||
(std::max(inputSize, outputSize) + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
biasGridSize = (outputSize + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
|
||||
activation = Activation(activationType, outputSize);
|
||||
}
|
||||
|
||||
Dense::~Dense() {
|
||||
|
||||
@@ -50,7 +50,6 @@ void Utils::sum(float* d_vec, float* d_sum, const unsigned int length) {
|
||||
|
||||
int remaining = gridSize;
|
||||
while (remaining > 1) {
|
||||
std::cout << remaining << std::endl;
|
||||
int blocks_needed = (remaining + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
CUDANet::Kernels::sum_reduce<<<blocks_needed, BLOCK_SIZE>>>(d_sum, d_sum, remaining);
|
||||
remaining = blocks_needed;
|
||||
|
||||
@@ -47,21 +47,3 @@ TEST(ActivationFunctionsTest, SigmoidSanityCheck) {
|
||||
|
||||
cudaDeviceReset();
|
||||
}
|
||||
|
||||
// void print_vec(float* d_vec, int length) {
|
||||
|
||||
// std::vector<float> h_vec(length);
|
||||
// CUDA_CHECK(cudaMemcpy(
|
||||
// h_vec.data(), d_vec, sizeof(float) * length, cudaMemcpyDeviceToHost
|
||||
// ));
|
||||
|
||||
// float sum = 0.0f;
|
||||
|
||||
// for (int i = 0; i < length; ++i) {
|
||||
// std::cout << h_vec[i] << ", ";
|
||||
// sum += h_vec[i];
|
||||
// }
|
||||
|
||||
// std::cout << std::endl;
|
||||
|
||||
// }
|
||||
@@ -61,7 +61,7 @@ TEST(MatMulTest, MatVecMulTest) {
|
||||
for (int j = 0; j < w; j++) {
|
||||
sum += matrix[i * w + j] * vector[j];
|
||||
}
|
||||
EXPECT_NEAR(sum, output_gpu[i], 1e-5);
|
||||
EXPECT_NEAR(sum, output_gpu[i], 1e-5f);
|
||||
}
|
||||
|
||||
cudaFree(d_matrix);
|
||||
@@ -151,7 +151,7 @@ TEST(MatMulTest, VecExpTest) {
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
for (int i = 0; i < 6; i++) {
|
||||
EXPECT_NEAR(expected[i], output[i], 1e7);
|
||||
EXPECT_NEAR(expected[i], output[i], 1e7f);
|
||||
}
|
||||
|
||||
cudaFree(d_input);
|
||||
@@ -193,7 +193,6 @@ TEST(MatMulTest, SumReduceTest) {
|
||||
|
||||
int remaining = gridSize;
|
||||
while (remaining > 1) {
|
||||
std::cout << remaining << std::endl;
|
||||
int blocks_needed = (remaining + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
CUDANet::Kernels::sum_reduce<<<blocks_needed, BLOCK_SIZE>>>(d_sum, d_sum, remaining);
|
||||
remaining = blocks_needed;
|
||||
|
||||
@@ -242,20 +242,13 @@ TEST_F(DenseLayerTest, ForwardRandomWeightMatrixSoftmax) {
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
std::vector<float> expected = {0.17124f, 0.28516f, 0.22208f, 0.32152f};
|
||||
// std::vector<float> expected = {0.46f, 0.97f, 0.72f, 1.09f};
|
||||
|
||||
float sum = 0.0f;
|
||||
|
||||
for (int i = 0; i < outputSize; ++i) {
|
||||
std::cout << output[i] << ", ";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
|
||||
for (int i = 0; i < outputSize; ++i) {
|
||||
sum += output[i];
|
||||
EXPECT_NEAR(output[i], expected[i], 1e-5);
|
||||
EXPECT_NEAR(output[i], expected[i], 1e-5f);
|
||||
}
|
||||
std::cout << std::endl;
|
||||
|
||||
EXPECT_NEAR(sum, 1.0f, 1e-5f);
|
||||
|
||||
|
||||
@@ -105,11 +105,9 @@ TEST(Model, TestModelPredict) {
|
||||
// float sum = 0.0f;
|
||||
for (int i = 0; i < outputSize; ++i) {
|
||||
sum += output[i];
|
||||
std::cout << output[i] << " ";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
|
||||
EXPECT_NEAR(sum, 1.0f, 1e-2f);
|
||||
EXPECT_NEAR(sum, 1.0f, 1e-5f);
|
||||
|
||||
cudaDeviceReset();
|
||||
}
|
||||
44
tools/dense_test.py
Normal file
44
tools/dense_test.py
Normal file
@@ -0,0 +1,44 @@
|
||||
import torch
|
||||
from utils import print_cpp_vector
|
||||
|
||||
def gen_dense_softmax_test():
|
||||
|
||||
input = torch.tensor([
|
||||
0.1, 0.2, 0.3, 0.4, 0.5
|
||||
])
|
||||
|
||||
weights = torch.tensor([
|
||||
0.5, 0.1, 0.1, 0.4, 0.2,
|
||||
0.4, 0.3, 0.9, 0.0, 0.8,
|
||||
0.8, 0.4, 0.6, 0.2, 0.0,
|
||||
0.1, 0.7, 0.3, 1.0, 0.1
|
||||
]).reshape(4, 5)
|
||||
|
||||
biases = torch.tensor([
|
||||
0.1, 0.2, 0.3, 0.4
|
||||
])
|
||||
|
||||
dense = torch.nn.Linear(5, 4)
|
||||
dense.weight = torch.nn.Parameter(weights)
|
||||
dense.bias = torch.nn.Parameter(biases)
|
||||
|
||||
output = dense(input)
|
||||
print_cpp_vector(output)
|
||||
|
||||
# Manual softmax
|
||||
softmax_exp = torch.exp(output)
|
||||
print(softmax_exp)
|
||||
|
||||
softmax_sum = torch.sum(softmax_exp, dim=0)
|
||||
print(softmax_sum)
|
||||
|
||||
souftmax_out = softmax_exp / softmax_sum
|
||||
print(souftmax_out)
|
||||
|
||||
|
||||
softmax = torch.nn.Softmax(dim=0)(output)
|
||||
print_cpp_vector(softmax)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
gen_dense_softmax_test()
|
||||
Reference in New Issue
Block a user