Cleanup and refactor

This commit is contained in:
2024-04-11 22:52:41 +02:00
parent 4b9d123e94
commit 18522c2dea
9 changed files with 81 additions and 72 deletions

View File

@@ -1,23 +1,22 @@
#include "activation.cuh"
#include "cuda_helper.cuh"
#include "activation_functions.cuh"
#include "matmul.cuh"
#include <iostream>
#include <vector>
#include "activation.cuh"
#include "activation_functions.cuh"
#include "cuda_helper.cuh"
#include "matmul.cuh"
#include "vector.cuh"
using namespace CUDANet::Layers;
Activation::Activation(ActivationType activation, const unsigned int length)
Activation::Activation(ActivationType activation, const int length)
: activationType(activation), length(length) {
if (activationType == SOFTMAX) {
d_softmax_sum = nullptr;
CUDA_CHECK(cudaMalloc((void**)&d_softmax_sum, sizeof(float) * length));
d_max = nullptr;
CUDA_CHECK(cudaMalloc((void**)&d_max, sizeof(float) * length));
d_softmax_sum = nullptr;
CUDA_CHECK(cudaMalloc((void**)&d_softmax_sum, sizeof(float) * length));
}
gridSize = (length + BLOCK_SIZE - 1) / BLOCK_SIZE;
@@ -26,10 +25,13 @@ Activation::Activation(ActivationType activation, const unsigned int length)
Activation::~Activation() {
if (activationType == SOFTMAX) {
cudaFree(d_softmax_sum);
cudaFree(d_max);
}
}
void Activation::activate(float* __restrict__ d_input) {
void Activation::activate(float* d_input) {
// float sum = 0.0f;
switch (activationType) {
case SIGMOID:
@@ -39,44 +41,36 @@ void Activation::activate(float* __restrict__ d_input) {
break;
case RELU:
Kernels::relu<<<gridSize, BLOCK_SIZE>>>(
d_input, d_input, length
);
Kernels::relu<<<gridSize, BLOCK_SIZE>>>(d_input, d_input, length);
break;
case SOFTMAX:
// Find max value
Kernels::max_reduce<<<gridSize, BLOCK_SIZE>>>(
d_input, d_max
);
Kernels::max_reduce<<<1, BLOCK_SIZE>>>(
d_max, d_max
);
Utils::max(d_input, d_max, length);
// Subtract max value to improve numerical stability
Kernels::vec_scalar_sub<<<gridSize, BLOCK_SIZE>>>(
d_input, d_max, d_input, length
d_input, d_input, d_max, length
);
// Compute softmax
Kernels::softmax_exp<<<gridSize, BLOCK_SIZE>>>(
// Compute exponentials
Kernels::vec_exp<<<gridSize, BLOCK_SIZE>>>(
d_input, d_input, length
);
Kernels::softmax_sum<<<gridSize, BLOCK_SIZE>>>(
d_input, d_softmax_sum
);
// Find sum
Utils::sum(d_input, d_softmax_sum, length);
Kernels::softmax_sum<<<1, BLOCK_SIZE>>>(
d_softmax_sum, d_softmax_sum
);
Kernels::softmax_div<<<gridSize, BLOCK_SIZE>>>(
Kernels::vec_scalar_div<<<gridSize, BLOCK_SIZE>>>(
d_input, d_input, d_softmax_sum, length
);
break;
default:
break;
break;
}
}
cudaDeviceSynchronize();
}

View File

@@ -23,8 +23,6 @@ Dense::Dense(
weights.resize(outputSize * inputSize);
biases.resize(outputSize);
activation = Activation(activationType, outputSize);
initializeWeights();
initializeBiases();
@@ -46,6 +44,8 @@ Dense::Dense(
forwardGridSize =
(std::max(inputSize, outputSize) + BLOCK_SIZE - 1) / BLOCK_SIZE;
biasGridSize = (outputSize + BLOCK_SIZE - 1) / BLOCK_SIZE;
activation = Activation(activationType, outputSize);
}
Dense::~Dense() {

View File

@@ -50,7 +50,6 @@ void Utils::sum(float* d_vec, float* d_sum, const unsigned int length) {
int remaining = gridSize;
while (remaining > 1) {
std::cout << remaining << std::endl;
int blocks_needed = (remaining + BLOCK_SIZE - 1) / BLOCK_SIZE;
CUDANet::Kernels::sum_reduce<<<blocks_needed, BLOCK_SIZE>>>(d_sum, d_sum, remaining);
remaining = blocks_needed;