mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-05 17:34:21 +00:00
Rework inception block tests
This commit is contained in:
@@ -1,62 +0,0 @@
|
||||
import sys
|
||||
|
||||
import torch
|
||||
from torchvision.models.inception import InceptionA
|
||||
|
||||
sys.path.append("../../../tools")
|
||||
from utils import print_cpp_vector
|
||||
|
||||
torch.manual_seed(0)
|
||||
|
||||
@torch.no_grad()
|
||||
def init_weights(m):
|
||||
if isinstance(m, torch.nn.Conv2d):
|
||||
torch.nn.init.uniform_(m.weight)
|
||||
elif isinstance(m, torch.nn.BatchNorm2d):
|
||||
torch.nn.init.uniform_(m.weight)
|
||||
torch.nn.init.uniform_(m.bias)
|
||||
|
||||
with torch.no_grad():
|
||||
inception_a = InceptionA(3, 6)
|
||||
inception_a.apply(init_weights)
|
||||
|
||||
# branch1x1
|
||||
print_cpp_vector(torch.flatten(inception_a.branch1x1.conv.weight), "branch1x1_conv_weights")
|
||||
print_cpp_vector(torch.flatten(inception_a.branch1x1.bn.weight), "branch1x1_bn_weights")
|
||||
print_cpp_vector(torch.flatten(inception_a.branch1x1.bn.bias), "branch1x1_bn_bias")
|
||||
|
||||
# branch5x5
|
||||
print_cpp_vector(torch.flatten(inception_a.branch5x5_1.conv.weight), "branch5x5_1_conv_weights")
|
||||
print_cpp_vector(torch.flatten(inception_a.branch5x5_1.bn.weight), "branch5x5_1_bn_weights")
|
||||
print_cpp_vector(torch.flatten(inception_a.branch5x5_1.bn.bias), "branch5x5_1_bn_bias")
|
||||
|
||||
print_cpp_vector(torch.flatten(inception_a.branch5x5_2.conv.weight), "branch5x5_2_conv_weights")
|
||||
print_cpp_vector(torch.flatten(inception_a.branch5x5_2.bn.weight), "branch5x5_2_bn_weights")
|
||||
print_cpp_vector(torch.flatten(inception_a.branch5x5_2.bn.bias), "branch5x5_2_bn_bias")
|
||||
|
||||
# branch3x3dbl
|
||||
print_cpp_vector(torch.flatten(inception_a.branch3x3dbl_1.conv.weight), "branch3x3dbl_1_conv_weights")
|
||||
print_cpp_vector(torch.flatten(inception_a.branch3x3dbl_1.bn.weight), "branch3x3dbl_1_bn_weights")
|
||||
print_cpp_vector(torch.flatten(inception_a.branch3x3dbl_1.bn.bias), "branch3x3dbl_1_bn_bias")
|
||||
|
||||
print_cpp_vector(torch.flatten(inception_a.branch3x3dbl_2.conv.weight), "branch3x3dbl_2_conv_weights")
|
||||
print_cpp_vector(torch.flatten(inception_a.branch3x3dbl_2.bn.weight), "branch3x3dbl_2_bn_weights")
|
||||
print_cpp_vector(torch.flatten(inception_a.branch3x3dbl_2.bn.bias), "branch3x3dbl_2_bn_bias")
|
||||
|
||||
print_cpp_vector(torch.flatten(inception_a.branch3x3dbl_3.conv.weight), "branch3x3dbl_3_conv_weights")
|
||||
print_cpp_vector(torch.flatten(inception_a.branch3x3dbl_3.bn.weight), "branch3x3dbl_3_bn_weights")
|
||||
print_cpp_vector(torch.flatten(inception_a.branch3x3dbl_3.bn.bias), "branch3x3dbl_3_bn_bias")
|
||||
|
||||
# branchPool
|
||||
print_cpp_vector(torch.flatten(inception_a.branch_pool.conv.weight), "branchPool_2_conv_weights")
|
||||
print_cpp_vector(torch.flatten(inception_a.branch_pool.bn.weight), "branchPool_2_bn_weights")
|
||||
print_cpp_vector(torch.flatten(inception_a.branch_pool.bn.bias), "branchPool_2_bn_bias")
|
||||
|
||||
input_shape = (1, 3, 8, 8)
|
||||
input = torch.randn(input_shape)
|
||||
print_cpp_vector(torch.flatten(input), "input")
|
||||
|
||||
output = inception_a(input)
|
||||
output = torch.flatten(output)
|
||||
print_cpp_vector(output)
|
||||
|
||||
@@ -1,47 +0,0 @@
|
||||
import sys
|
||||
|
||||
import torch
|
||||
from torchvision.models.inception import InceptionB
|
||||
|
||||
sys.path.append("../../../tools")
|
||||
from utils import print_cpp_vector
|
||||
|
||||
torch.manual_seed(0)
|
||||
|
||||
@torch.no_grad()
|
||||
def init_weights(m):
|
||||
if isinstance(m, torch.nn.Conv2d):
|
||||
torch.nn.init.uniform_(m.weight)
|
||||
elif isinstance(m, torch.nn.BatchNorm2d):
|
||||
torch.nn.init.uniform_(m.weight)
|
||||
torch.nn.init.uniform_(m.bias)
|
||||
|
||||
with torch.no_grad():
|
||||
inception_b = InceptionB(3)
|
||||
inception_b.apply(init_weights)
|
||||
|
||||
# branch3x3
|
||||
print_cpp_vector(torch.flatten(inception_b.branch3x3.conv.weight), "branch3x3_conv_weights")
|
||||
print_cpp_vector(torch.flatten(inception_b.branch3x3.bn.weight), "branch3x3_bn_weights")
|
||||
print_cpp_vector(torch.flatten(inception_b.branch3x3.bn.bias), "branch3x3_bn_bias")
|
||||
|
||||
# branch3x3dbl
|
||||
print_cpp_vector(torch.flatten(inception_b.branch3x3dbl_1.conv.weight), "branch3x3dbl_1_conv_weights")
|
||||
print_cpp_vector(torch.flatten(inception_b.branch3x3dbl_1.bn.weight), "branch3x3dbl_1_bn_weights")
|
||||
print_cpp_vector(torch.flatten(inception_b.branch3x3dbl_1.bn.bias), "branch3x3dbl_1_bn_bias")
|
||||
|
||||
print_cpp_vector(torch.flatten(inception_b.branch3x3dbl_2.conv.weight), "branch3x3dbl_2_conv_weights")
|
||||
print_cpp_vector(torch.flatten(inception_b.branch3x3dbl_2.bn.weight), "branch3x3dbl_2_bn_weights")
|
||||
print_cpp_vector(torch.flatten(inception_b.branch3x3dbl_2.bn.bias), "branch3x3dbl_2_bn_bias")
|
||||
|
||||
print_cpp_vector(torch.flatten(inception_b.branch3x3dbl_3.conv.weight), "branch3x3dbl_3_conv_weights")
|
||||
print_cpp_vector(torch.flatten(inception_b.branch3x3dbl_3.bn.weight), "branch3x3dbl_3_bn_weights")
|
||||
print_cpp_vector(torch.flatten(inception_b.branch3x3dbl_3.bn.bias), "branch3x3dbl_3_bn_bias")
|
||||
|
||||
input_shape = (1, 3, 8, 8)
|
||||
input = torch.randn(input_shape)
|
||||
print_cpp_vector(torch.flatten(input), "input")
|
||||
|
||||
output = inception_b(input)
|
||||
output = torch.flatten(output)
|
||||
print_cpp_vector(output, "expected")
|
||||
83
examples/inception_v3/tests/inception_blocks.py
Normal file
83
examples/inception_v3/tests/inception_blocks.py
Normal file
@@ -0,0 +1,83 @@
|
||||
import sys
|
||||
|
||||
import torch
|
||||
from torchvision.models.inception import (
|
||||
InceptionA,
|
||||
InceptionB,
|
||||
InceptionC,
|
||||
InceptionD,
|
||||
InceptionE
|
||||
)
|
||||
|
||||
sys.path.append("../../../tools")
|
||||
from utils import print_cpp_vector, export_model_weights
|
||||
|
||||
torch.manual_seed(0)
|
||||
|
||||
output_size = 50
|
||||
|
||||
class InceptionBlockModel(torch.nn.Module):
|
||||
def __init__(self, inception_block: torch.nn.Module, linear_in: int, *args, **kwargs) -> None:
|
||||
super().__init__(*args, **kwargs)
|
||||
self.inception_block = inception_block
|
||||
self.fc = torch.nn.Linear(linear_in, output_size)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.inception_block(x)
|
||||
x = torch.flatten(x)
|
||||
x = self.fc(x)
|
||||
return x
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def init_weights(m: torch.nn.Module):
|
||||
if isinstance(m, torch.nn.Conv2d):
|
||||
torch.nn.init.uniform_(m.weight, -1, 1)
|
||||
elif isinstance(m, torch.nn.BatchNorm2d) or isinstance(m, torch.nn.Linear):
|
||||
torch.nn.init.uniform_(m.weight, -1)
|
||||
torch.nn.init.uniform_(m.bias, 1)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def generate_module_test_data(m: torch.nn.Module, name: str):
|
||||
|
||||
print(name)
|
||||
|
||||
input_shape = (1, 3, 4, 4)
|
||||
input = torch.randn(input_shape)
|
||||
print_cpp_vector(torch.flatten(input), "input")
|
||||
|
||||
m.eval()
|
||||
inception_out = m(input)
|
||||
linear_in = torch.flatten(inception_out).size(0)
|
||||
|
||||
inception_block = InceptionBlockModel(m, linear_in)
|
||||
inception_block.apply(init_weights)
|
||||
|
||||
export_model_weights(inception_block, f"resources/{name}.bin")
|
||||
|
||||
inception_block.eval()
|
||||
output = inception_block(input)
|
||||
print_cpp_vector(torch.flatten(output), "expected")
|
||||
|
||||
print()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
m = InceptionA(3, 6)
|
||||
generate_module_test_data(m, "inception_a")
|
||||
|
||||
m = InceptionB(3)
|
||||
generate_module_test_data(m, "inception_b")
|
||||
|
||||
m = InceptionC(3, 64)
|
||||
generate_module_test_data(m, "inception_c")
|
||||
|
||||
m = InceptionD(3)
|
||||
generate_module_test_data(m, "inception_d")
|
||||
|
||||
m = InceptionE(3)
|
||||
generate_module_test_data(m, "inception_e")
|
||||
|
||||
|
||||
|
||||
@@ -1,73 +0,0 @@
|
||||
import sys
|
||||
|
||||
import torch
|
||||
from torchvision.models.inception import InceptionC
|
||||
|
||||
sys.path.append("../../../tools")
|
||||
from utils import print_cpp_vector
|
||||
|
||||
torch.manual_seed(0)
|
||||
|
||||
@torch.no_grad()
|
||||
def init_weights(m):
|
||||
if isinstance(m, torch.nn.Conv2d):
|
||||
torch.nn.init.uniform_(m.weight)
|
||||
elif isinstance(m, torch.nn.BatchNorm2d):
|
||||
torch.nn.init.uniform_(m.weight)
|
||||
torch.nn.init.uniform_(m.bias)
|
||||
|
||||
with torch.no_grad():
|
||||
inception_c = InceptionC(3, 64)
|
||||
inception_c.apply(init_weights)
|
||||
|
||||
# branch1x1
|
||||
print_cpp_vector(torch.flatten(inception_c.branch1x1.conv.weight), "branch1x1_conv_weights")
|
||||
print_cpp_vector(torch.flatten(inception_c.branch1x1.bn.weight), "branch1x1_bn_weights")
|
||||
print_cpp_vector(torch.flatten(inception_c.branch1x1.bn.bias), "branch1x1_bn_bias")
|
||||
|
||||
# branch7x7
|
||||
print_cpp_vector(torch.flatten(inception_c.branch7x7_1.conv.weight), "branch7x7_1_conv_weights")
|
||||
print_cpp_vector(torch.flatten(inception_c.branch7x7_1.bn.weight), "branch7x7_1_bn_weights")
|
||||
print_cpp_vector(torch.flatten(inception_c.branch7x7_1.bn.bias), "branch7x7_1_bn_bias")
|
||||
|
||||
print_cpp_vector(torch.flatten(inception_c.branch7x7_2.conv.weight), "branch7x7_2_conv_weights")
|
||||
print_cpp_vector(torch.flatten(inception_c.branch7x7_2.bn.weight), "branch7x7_2_bn_weights")
|
||||
print_cpp_vector(torch.flatten(inception_c.branch7x7_2.bn.bias), "branch7x7_2_bn_bias")
|
||||
|
||||
print_cpp_vector(torch.flatten(inception_c.branch7x7_3.conv.weight), "branch7x7_3_conv_weights")
|
||||
print_cpp_vector(torch.flatten(inception_c.branch7x7_3.bn.weight), "branch7x7_3_bn_weights")
|
||||
print_cpp_vector(torch.flatten(inception_c.branch7x7_3.bn.bias), "branch7x7_3_bn_bias")
|
||||
|
||||
# branch7x7dbl
|
||||
print_cpp_vector(torch.flatten(inception_c.branch7x7dbl_1.conv.weight), "branch7x7dbl_1_conv_weights")
|
||||
print_cpp_vector(torch.flatten(inception_c.branch7x7dbl_1.bn.weight), "branch7x7dbl_1_bn_weights")
|
||||
print_cpp_vector(torch.flatten(inception_c.branch7x7dbl_1.bn.bias), "branch7x7dbl_1_bn_bias")
|
||||
|
||||
print_cpp_vector(torch.flatten(inception_c.branch7x7dbl_2.conv.weight), "branch7x7dbl_2_conv_weights")
|
||||
print_cpp_vector(torch.flatten(inception_c.branch7x7dbl_2.bn.weight), "branch7x7dbl_2_bn_weights")
|
||||
print_cpp_vector(torch.flatten(inception_c.branch7x7dbl_2.bn.bias), "branch7x7dbl_2_bn_bias")
|
||||
|
||||
print_cpp_vector(torch.flatten(inception_c.branch7x7dbl_3.conv.weight), "branch7x7dbl_3_conv_weights")
|
||||
print_cpp_vector(torch.flatten(inception_c.branch7x7dbl_3.bn.weight), "branch7x7dbl_3_bn_weights")
|
||||
print_cpp_vector(torch.flatten(inception_c.branch7x7dbl_3.bn.bias), "branch7x7dbl_3_bn_bias")
|
||||
|
||||
print_cpp_vector(torch.flatten(inception_c.branch7x7dbl_4.conv.weight), "branch7x7dbl_4_conv_weights")
|
||||
print_cpp_vector(torch.flatten(inception_c.branch7x7dbl_4.bn.weight), "branch7x7dbl_4_bn_weights")
|
||||
print_cpp_vector(torch.flatten(inception_c.branch7x7dbl_4.bn.bias), "branch7x7dbl_4_bn_bias")
|
||||
|
||||
print_cpp_vector(torch.flatten(inception_c.branch7x7dbl_5.conv.weight), "branch7x7dbl_5_conv_weights")
|
||||
print_cpp_vector(torch.flatten(inception_c.branch7x7dbl_5.bn.weight), "branch7x7dbl_5_bn_weights")
|
||||
print_cpp_vector(torch.flatten(inception_c.branch7x7dbl_5.bn.bias), "branch7x7dbl_5_bn_bias")
|
||||
|
||||
# branch_pool
|
||||
print_cpp_vector(torch.flatten(inception_c.branch_pool.conv.weight), "branchPool_2_conv_weights")
|
||||
print_cpp_vector(torch.flatten(inception_c.branch_pool.bn.weight), "branchPool_2_bn_weights")
|
||||
print_cpp_vector(torch.flatten(inception_c.branch_pool.bn.bias), "branchPool_2_bn_bias")
|
||||
|
||||
input_shape = (1, 3, 8, 8)
|
||||
input = torch.randn(input_shape)
|
||||
print_cpp_vector(torch.flatten(input), "input")
|
||||
|
||||
output = inception_c(input)
|
||||
output = torch.flatten(output)
|
||||
print_cpp_vector(output, "expected")
|
||||
@@ -1,55 +0,0 @@
|
||||
import sys
|
||||
|
||||
import torch
|
||||
from torchvision.models.inception import InceptionD
|
||||
|
||||
sys.path.append("../../../tools")
|
||||
from utils import print_cpp_vector
|
||||
|
||||
torch.manual_seed(0)
|
||||
|
||||
@torch.no_grad()
|
||||
def init_weights(m):
|
||||
if isinstance(m, torch.nn.Conv2d):
|
||||
torch.nn.init.uniform_(m.weight)
|
||||
elif isinstance(m, torch.nn.BatchNorm2d):
|
||||
torch.nn.init.uniform_(m.weight)
|
||||
torch.nn.init.uniform_(m.bias)
|
||||
|
||||
with torch.no_grad():
|
||||
inception_c = InceptionD(3)
|
||||
inception_c.apply(init_weights)
|
||||
|
||||
# branch3x3
|
||||
print_cpp_vector(torch.flatten(inception_c.branch3x3_1.conv.weight), "branch3x3_1_conv_weights")
|
||||
print_cpp_vector(torch.flatten(inception_c.branch3x3_1.bn.weight), "branch3x3_1_bn_weights")
|
||||
print_cpp_vector(torch.flatten(inception_c.branch3x3_1.bn.bias), "branch3x3_1_bn_bias")
|
||||
|
||||
print_cpp_vector(torch.flatten(inception_c.branch3x3_2.conv.weight), "branch3x3_2_conv_weights")
|
||||
print_cpp_vector(torch.flatten(inception_c.branch3x3_2.bn.weight), "branch3x3_2_bn_weights")
|
||||
print_cpp_vector(torch.flatten(inception_c.branch3x3_2.bn.bias), "branch3x3_2_bn_bias")
|
||||
|
||||
# branch7x7x3
|
||||
print_cpp_vector(torch.flatten(inception_c.branch7x7x3_1.conv.weight), "branch7x7x3_1_conv_weights")
|
||||
print_cpp_vector(torch.flatten(inception_c.branch7x7x3_1.bn.weight), "branch7x7x3_1_bn_weights")
|
||||
print_cpp_vector(torch.flatten(inception_c.branch7x7x3_1.bn.bias), "branch7x7x3_1_bn_bias")
|
||||
|
||||
print_cpp_vector(torch.flatten(inception_c.branch7x7x3_2.conv.weight), "branch7x7x3_2_conv_weights")
|
||||
print_cpp_vector(torch.flatten(inception_c.branch7x7x3_2.bn.weight), "branch7x7x3_2_bn_weights")
|
||||
print_cpp_vector(torch.flatten(inception_c.branch7x7x3_2.bn.bias), "branch7x7x3_2_bn_bias")
|
||||
|
||||
print_cpp_vector(torch.flatten(inception_c.branch7x7x3_3.conv.weight), "branch7x7x3_3_conv_weights")
|
||||
print_cpp_vector(torch.flatten(inception_c.branch7x7x3_3.bn.weight), "branch7x7x3_3_bn_weights")
|
||||
print_cpp_vector(torch.flatten(inception_c.branch7x7x3_3.bn.bias), "branch7x7x3_3_bn_bias")
|
||||
|
||||
print_cpp_vector(torch.flatten(inception_c.branch7x7x3_4.conv.weight), "branch7x7x3_4_conv_weights")
|
||||
print_cpp_vector(torch.flatten(inception_c.branch7x7x3_4.bn.weight), "branch7x7x3_4_bn_weights")
|
||||
print_cpp_vector(torch.flatten(inception_c.branch7x7x3_4.bn.bias), "branch7x7x3_4_bn_bias")
|
||||
|
||||
input_shape = (1, 3, 8, 8)
|
||||
input = torch.randn(input_shape)
|
||||
print_cpp_vector(torch.flatten(input), "input")
|
||||
|
||||
output = inception_c(input)
|
||||
output = torch.flatten(output)
|
||||
print_cpp_vector(output, "expected")
|
||||
@@ -12,7 +12,7 @@ class BasicConv2dTest : public ::testing::Test {
|
||||
shape2d kernelSize;
|
||||
shape2d stride;
|
||||
shape2d padding;
|
||||
std::string prefix = "test";
|
||||
std::string prefix = "test.";
|
||||
|
||||
float *d_input;
|
||||
float *d_output;
|
||||
@@ -46,7 +46,7 @@ class BasicConv2dTest : public ::testing::Test {
|
||||
std::pair<std::string, CUDANet::Layers::SequentialLayer *> layerPair =
|
||||
basic_conv2d->getLayers()[0];
|
||||
|
||||
ASSERT_EQ(layerPair.first, prefix + ".conv");
|
||||
ASSERT_EQ(layerPair.first, prefix + "conv");
|
||||
|
||||
CUDANet::Layers::Conv2d *conv =
|
||||
dynamic_cast<CUDANet::Layers::Conv2d *>(layerPair.second);
|
||||
@@ -60,7 +60,7 @@ class BasicConv2dTest : public ::testing::Test {
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
layerPair = basic_conv2d->getLayers()[1];
|
||||
ASSERT_EQ(layerPair.first, prefix + ".bn");
|
||||
ASSERT_EQ(layerPair.first, prefix + "bn");
|
||||
|
||||
CUDANet::Layers::BatchNorm2d *bn =
|
||||
dynamic_cast<CUDANet::Layers::BatchNorm2d *>(layerPair.second);
|
||||
|
||||
50
examples/inception_v3/tests/test_fixture.hpp
Normal file
50
examples/inception_v3/tests/test_fixture.hpp
Normal file
@@ -0,0 +1,50 @@
|
||||
#ifndef TEST_FIXTURE_H
|
||||
#define TEST_FIXTURE_H
|
||||
|
||||
#include <cmath>
|
||||
#include <gtest/gtest.h>
|
||||
|
||||
#include "inception_v3.hpp"
|
||||
|
||||
class InceptionBlockTest : public ::testing::Test {
|
||||
protected:
|
||||
CUDANet::Model *model;
|
||||
|
||||
cudaError_t cudaStatus;
|
||||
|
||||
shape2d inputShape;
|
||||
int inputChannels;
|
||||
|
||||
int outputSize;
|
||||
|
||||
std::vector<float> input;
|
||||
std::vector<float> expected;
|
||||
|
||||
virtual void SetUp() override {
|
||||
model = nullptr;
|
||||
}
|
||||
|
||||
virtual void TearDown() override {
|
||||
// Clean up
|
||||
delete model;
|
||||
}
|
||||
|
||||
void runTest() {
|
||||
EXPECT_EQ(
|
||||
input.size(), inputShape.first * inputShape.second * inputChannels
|
||||
);
|
||||
|
||||
float *output = model->predict(input.data());
|
||||
|
||||
cudaStatus = cudaGetLastError();
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
EXPECT_EQ(outputSize, expected.size());
|
||||
|
||||
for (int i = 0; i < outputSize; ++i) {
|
||||
EXPECT_NEAR(expected[i], output[i], 1e-3f);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
#endif
|
||||
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because one or more lines are too long
69
examples/inception_v3/tests/test_inception_e.cpp
Normal file
69
examples/inception_v3/tests/test_inception_e.cpp
Normal file
@@ -0,0 +1,69 @@
|
||||
#include <gtest/gtest.h>
|
||||
|
||||
#include <inception_v3.hpp>
|
||||
|
||||
#include "test_fixture.hpp"
|
||||
|
||||
class InceptionEModel : public CUDANet::Model {
|
||||
public:
|
||||
InceptionEModel(
|
||||
const shape2d inputShape,
|
||||
const int inputChannels,
|
||||
const int outputSize
|
||||
)
|
||||
: CUDANet::Model(inputShape, inputChannels, outputSize) {
|
||||
inception_e =
|
||||
new InceptionE(inputShape, inputChannels, "inception_block.");
|
||||
addLayer("", inception_e);
|
||||
fc = new CUDANet::Layers::Dense(
|
||||
inception_e->getOutputSize(), 50,
|
||||
CUDANet::Layers::ActivationType::NONE
|
||||
);
|
||||
addLayer("fc", fc);
|
||||
};
|
||||
|
||||
float *predict(const float *input) override {
|
||||
float *d_input = inputLayer->forward(input);
|
||||
d_input = inception_e->forward(d_input);
|
||||
d_input = fc->forward(d_input);
|
||||
return outputLayer->forward(d_input);
|
||||
}
|
||||
|
||||
private:
|
||||
InceptionE *inception_e;
|
||||
CUDANet::Layers::Dense *fc;
|
||||
};
|
||||
|
||||
TEST_F(InceptionBlockTest, InceptionETest) {
|
||||
inputShape = {4, 4};
|
||||
inputChannels = 3;
|
||||
outputSize = 50;
|
||||
|
||||
model = new InceptionEModel(inputShape, inputChannels, outputSize);
|
||||
model->loadWeights("../tests/resources/inception_e.bin");
|
||||
|
||||
input = {1.85083f, 0.11234f, 0.05994f, -1.02453f, 0.21205f, -0.67387f,
|
||||
0.66981f, -0.40378f, 0.34194f, 0.92048f, 0.87556f, 0.81094f,
|
||||
-1.55728f, -0.70326f, -0.25078f, -0.10276f, 1.10463f, -2.40992f,
|
||||
-1.7226f, -0.18546f, 0.14397f, -1.24784f, -0.35248f, -1.28729f,
|
||||
0.44803f, 1.68539f, -1.05037f, 0.32115f, -0.12896f, 1.02391f,
|
||||
0.95329f, -0.81876f, -1.05828f, 0.09282f, -0.38344f, 2.05074f,
|
||||
2.1034f, 1.65832f, 1.63788f, -1.32596f, -1.43412f, -1.28353f,
|
||||
0.70226f, 0.9459f, 0.8579f, 0.15361f, 0.34449f, -1.70587f};
|
||||
|
||||
expected = {1614.15283f, -11319.01855f, 614.40479f, 5280.0293f,
|
||||
1914.45007f, -2937.50317f, -11177.16113f, 3215.01245f,
|
||||
6249.16992f, 5654.91357f, -11702.27148f, 13057.32422f,
|
||||
8665.35742f, 3911.11743f, 5239.45947f, -11552.88477f,
|
||||
-8056.7666f, -16426.19922f, -1383.04346f, 6573.53125f,
|
||||
-12226.16992f, -6641.0957f, -9614.80078f, -9313.30273f,
|
||||
7023.68848f, 2089.5752f, 1095.53369f, -1387.65698f,
|
||||
-7928.21729f, -9489.18848f, 4159.78613f, -690.03442f,
|
||||
-8356.81738f, 12364.08203f, 8226.95703f, 8822.66602f,
|
||||
-5462.90381f, -1037.42773f, 12958.68555f, -666.58423f,
|
||||
2032.38574f, -9534.14062f, -947.41333f, 689.37158f,
|
||||
4585.76465f, -23245.36719f, 975.83398f, -1253.45703f,
|
||||
-14745.35059f, -2588.05493f};
|
||||
|
||||
runTest();
|
||||
}
|
||||
Reference in New Issue
Block a user