mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-05 17:34:21 +00:00
Start implementing padding kernel
This commit is contained in:
@@ -11,6 +11,7 @@ include_directories(${CUDAToolkit_INCLUDE_DIRS})
|
||||
set(LIBRARY_SOURCES
|
||||
src/utils/cuda_helper.cu
|
||||
src/kernels/activations.cu
|
||||
src/kernels/padding.cu
|
||||
src/layers/dense.cu
|
||||
)
|
||||
|
||||
|
||||
13
include/kernels/padding.cuh
Normal file
13
include/kernels/padding.cuh
Normal file
@@ -0,0 +1,13 @@
|
||||
#ifndef PADDING_H
|
||||
#define PADDING_H
|
||||
|
||||
__global__ void pad_matrix_kernel(
|
||||
const float* d_input,
|
||||
float* d_padded,
|
||||
int w,
|
||||
int h,
|
||||
int n,
|
||||
int p
|
||||
);
|
||||
|
||||
#endif // PADDING_H
|
||||
57
src/kernels/padding.cu
Normal file
57
src/kernels/padding.cu
Normal file
@@ -0,0 +1,57 @@
|
||||
/*
|
||||
Pads matrix width x height x n_channels to width + 2 * padding x height + 2 *
|
||||
padding x n_channels Matrix is represented as a pointer to column major vector
|
||||
|
||||
For example:
|
||||
|
||||
w = 2
|
||||
h = 3
|
||||
n = 2
|
||||
p = 1
|
||||
|
||||
Channel 0:
|
||||
0 1
|
||||
2 3
|
||||
4 5
|
||||
Channel 1:
|
||||
6 7
|
||||
8 9
|
||||
10 11
|
||||
|
||||
Is represented as:
|
||||
|
||||
0 2 4 1 3 5 6 8 10 7 9 11
|
||||
|
||||
Padded result:
|
||||
|
||||
0 0 0 0 0 0 0 2 4 0 0 1 3 5 0 0 0 0 0 0 0 0 0 0 0 0 6 8 10 0 0 7 9 11 0 0 0 0 0 0
|
||||
|
||||
|
||||
Args:
|
||||
d_input: Pointer to input vector representing matrix
|
||||
d_padded: Pointer to output vector representing padded matrix (needs to be
|
||||
pre-allocated) w: Width of input matrix h: Height of input matrix n: Number of
|
||||
channels in input matrix p: Padding
|
||||
*/
|
||||
__global__ void pad_matrix_kernel(
|
||||
const float* d_input,
|
||||
float* d_padded,
|
||||
int w,
|
||||
int h,
|
||||
int n,
|
||||
int p
|
||||
) {
|
||||
int stride = gridDim.x * blockDim.x;
|
||||
int tid = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
|
||||
for (int i = tid; i < (w + 2 * p) * (h + 2 * p) * n; i += stride) {
|
||||
|
||||
// if i is in the padding region
|
||||
if (i < p * (h + 2 * p) * n || i >= (w + p) * (h + 2 * p) * n) {
|
||||
d_padded[i] = 0.0f;
|
||||
} else {
|
||||
// if i is in the original region
|
||||
d_padded[i] = d_input[(i - p * (h + 2 * p) * n) / (h + 2 * p) * w + (i - p * (h + 2 * p) * n) % (h + 2 * p)];
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,7 +1,11 @@
|
||||
find_package(GTest REQUIRED)
|
||||
include_directories(${GTEST_INCLUDE_DIRS})
|
||||
|
||||
add_executable(test_main layers/test_dense.cu kernels/test_activations.cu)
|
||||
add_executable(test_main
|
||||
layers/test_dense.cu
|
||||
kernels/test_activations.cu
|
||||
kernels/test_padding.cu
|
||||
)
|
||||
|
||||
add_library(test_utils
|
||||
test_utils/test_cublas_fixture.cu
|
||||
|
||||
82
test/kernels/test_padding.cu
Normal file
82
test/kernels/test_padding.cu
Normal file
@@ -0,0 +1,82 @@
|
||||
#include <cuda_runtime_api.h>
|
||||
#include <gtest/gtest.h>
|
||||
|
||||
#include <iostream>
|
||||
|
||||
#include "padding.cuh"
|
||||
#include "test_cublas_fixture.cuh"
|
||||
|
||||
class PaddingTest : public CublasTestFixture {
|
||||
protected:
|
||||
cudaError_t cudaStatus;
|
||||
cublasStatus_t cublasStatus;
|
||||
};
|
||||
|
||||
TEST_F(PaddingTest, SimplePaddingTest) {
|
||||
int w = 2;
|
||||
int h = 3;
|
||||
int n = 2;
|
||||
int p = 1;
|
||||
|
||||
float* d_input;
|
||||
float* d_padded;
|
||||
|
||||
int inputSize = w * h * n;
|
||||
int paddedSize = (w + 2 * p) * (h + 2 * p) * n;
|
||||
|
||||
cudaStatus = cudaMalloc((void**)&d_input, sizeof(float) * inputSize);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
cudaStatus = cudaMalloc(
|
||||
(void**)&d_padded, sizeof(float) * paddedSize
|
||||
);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
/*
|
||||
Matrix channel 0:
|
||||
0 1
|
||||
2 3
|
||||
4 5
|
||||
Matrix channel 1:
|
||||
6 7
|
||||
8 9
|
||||
10 11
|
||||
|
||||
Represented as column major vector:
|
||||
|
||||
0 2 4 1 3 5 6 8 10 7 9 11
|
||||
*/
|
||||
|
||||
std::vector<float> input = {0.0f, 2.0f, 4.0f, 1.0f, 3.0f, 5.0f,
|
||||
6.0f, 8.0f, 10.0f, 7.0f, 9.0f, 11.0f};
|
||||
|
||||
cublasStatus =
|
||||
cublasSetVector(inputSize, sizeof(float), input.data(), 1, d_input, 1);
|
||||
EXPECT_EQ(cublasStatus, CUBLAS_STATUS_SUCCESS);
|
||||
|
||||
pad_matrix_kernel<<<1, 1>>>(d_input, d_padded, w, h, n, p);
|
||||
cudaStatus = cudaDeviceSynchronize();
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
std::vector<float> expectedOutput = {
|
||||
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 2.0f, 4.0f, 0.0f,
|
||||
0.0f, 1.0f, 3.0f, 5.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
|
||||
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 6.0f, 8.0f, 10.0f, 0.0f,
|
||||
0.0f, 7.0f, 9.0f, 11.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f
|
||||
};
|
||||
|
||||
std::vector<float> output(paddedSize);
|
||||
cublasStatus = cublasGetVector(
|
||||
paddedSize, sizeof(float), d_padded, 1, output.data(), 1
|
||||
);
|
||||
|
||||
std::cout << "Actual output: " << std::endl;
|
||||
for (int i = 0; i < paddedSize; i++) {
|
||||
std::cout << output[i] << " ";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
|
||||
for (int i = 0; i < paddedSize; i++) {
|
||||
EXPECT_NEAR(expectedOutput[i], output[i], 1e-5);
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user