mirror of
https://github.com/lordmathis/llamactl.git
synced 2025-11-05 16:44:22 +00:00
210 lines
7.3 KiB
Markdown
210 lines
7.3 KiB
Markdown
# llamactl
|
|
|
|
   
|
|
|
|
**Unified management and routing for llama.cpp, MLX and vLLM models with web dashboard.**
|
|
|
|
📚 **[Full Documentation →](https://llamactl.org)**
|
|
|
|

|
|
|
|
## Features
|
|
|
|
### 🚀 Easy Model Management
|
|
- **Multiple Models Simultaneously**: Run different models at the same time (7B for speed, 70B for quality)
|
|
- **Smart Resource Management**: Automatic idle timeout, LRU eviction, and configurable instance limits
|
|
- **Web Dashboard**: Modern React UI for managing instances, monitoring health, and viewing logs
|
|
|
|
### 🔗 Flexible Integration
|
|
- **OpenAI API Compatible**: Drop-in replacement - route requests to different models by instance name
|
|
- **Multi-Backend Support**: Native support for llama.cpp, MLX (Apple Silicon optimized), and vLLM
|
|
- **Docker Ready**: Run backends in containers with full GPU support
|
|
|
|
### 🌐 Distributed Deployment
|
|
- **Remote Instances**: Deploy instances on remote hosts
|
|
- **Central Management**: Manage everything from a single dashboard with automatic routing
|
|
|
|
## Quick Start
|
|
|
|
1. Install a backend (llama.cpp, MLX, or vLLM) - see [Prerequisites](#prerequisites) below
|
|
2. [Download llamactl](#installation) for your platform
|
|
3. Run `llamactl` and open http://localhost:8080
|
|
4. Create an instance and start inferencing!
|
|
|
|
## Prerequisites
|
|
|
|
### Backend Dependencies
|
|
|
|
**For llama.cpp backend:**
|
|
You need `llama-server` from [llama.cpp](https://github.com/ggml-org/llama.cpp) installed:
|
|
|
|
```bash
|
|
# Homebrew (macOS)
|
|
brew install llama.cpp
|
|
|
|
# Or build from source - see llama.cpp docs
|
|
# Or use Docker - no local installation required
|
|
```
|
|
|
|
**For MLX backend (macOS only):**
|
|
You need MLX-LM installed:
|
|
|
|
```bash
|
|
# Install via pip (requires Python 3.8+)
|
|
pip install mlx-lm
|
|
|
|
# Or in a virtual environment (recommended)
|
|
python -m venv mlx-env
|
|
source mlx-env/bin/activate
|
|
pip install mlx-lm
|
|
```
|
|
|
|
**For vLLM backend:**
|
|
You need vLLM installed:
|
|
|
|
```bash
|
|
# Install via pip (requires Python 3.8+, GPU required)
|
|
pip install vllm
|
|
|
|
# Or in a virtual environment (recommended)
|
|
python -m venv vllm-env
|
|
source vllm-env/bin/activate
|
|
pip install vllm
|
|
|
|
# Or use Docker - no local installation required
|
|
```
|
|
|
|
### Docker Support
|
|
|
|
llamactl can run backends in Docker containers, eliminating the need for local backend installation:
|
|
|
|
```yaml
|
|
backends:
|
|
llama-cpp:
|
|
docker:
|
|
enabled: true
|
|
vllm:
|
|
docker:
|
|
enabled: true
|
|
```
|
|
|
|
## Installation
|
|
|
|
### Option 1: Download Binary (Recommended)
|
|
|
|
```bash
|
|
# Linux/macOS - Get latest version and download
|
|
LATEST_VERSION=$(curl -s https://api.github.com/repos/lordmathis/llamactl/releases/latest | grep '"tag_name":' | sed -E 's/.*"([^"]+)".*/\1/')
|
|
curl -L https://github.com/lordmathis/llamactl/releases/download/${LATEST_VERSION}/llamactl-${LATEST_VERSION}-$(uname -s | tr '[:upper:]' '[:lower:]')-$(uname -m).tar.gz | tar -xz
|
|
sudo mv llamactl /usr/local/bin/
|
|
|
|
# Or download manually from the releases page:
|
|
# https://github.com/lordmathis/llamactl/releases/latest
|
|
|
|
# Windows - Download from releases page
|
|
```
|
|
|
|
### Option 2: Docker (No local backend installation required)
|
|
|
|
```bash
|
|
# Clone repository and build Docker images
|
|
git clone https://github.com/lordmathis/llamactl.git
|
|
cd llamactl
|
|
mkdir -p data/llamacpp data/vllm models
|
|
|
|
# Build and start llamactl with llama.cpp CUDA backend
|
|
docker-compose -f docker/docker-compose.yml up llamactl-llamacpp -d
|
|
|
|
# Build and start llamactl with vLLM CUDA backend
|
|
docker-compose -f docker/docker-compose.yml up llamactl-vllm -d
|
|
|
|
# Build from source using multi-stage build
|
|
docker build -f docker/Dockerfile.source -t llamactl:source .
|
|
```
|
|
|
|
**Note:** Dockerfiles are configured for CUDA. Adapt base images for other platforms (CPU, ROCm, etc.).
|
|
|
|
### Option 3: Build from Source
|
|
Requires Go 1.24+ and Node.js 22+
|
|
```bash
|
|
git clone https://github.com/lordmathis/llamactl.git
|
|
cd llamactl
|
|
cd webui && npm ci && npm run build && cd ..
|
|
go build -o llamactl ./cmd/server
|
|
```
|
|
|
|
## Usage
|
|
|
|
1. Open http://localhost:8080
|
|
2. Click "Create Instance"
|
|
3. Choose backend type (llama.cpp, MLX, or vLLM)
|
|
4. Configure your model and options
|
|
5. Start the instance and use it with any OpenAI-compatible client
|
|
|
|
## Configuration
|
|
|
|
llamactl works out of the box with sensible defaults.
|
|
|
|
```yaml
|
|
server:
|
|
host: "0.0.0.0" # Server host to bind to
|
|
port: 8080 # Server port to bind to
|
|
allowed_origins: ["*"] # Allowed CORS origins (default: all)
|
|
allowed_headers: ["*"] # Allowed CORS headers (default: all)
|
|
enable_swagger: false # Enable Swagger UI for API docs
|
|
|
|
backends:
|
|
llama-cpp:
|
|
command: "llama-server"
|
|
args: []
|
|
environment: {} # Environment variables for the backend process
|
|
docker:
|
|
enabled: false
|
|
image: "ghcr.io/ggml-org/llama.cpp:server"
|
|
args: ["run", "--rm", "--network", "host", "--gpus", "all", "-v", "~/.local/share/llamactl/llama.cpp:/root/.cache/llama.cpp"]
|
|
environment: {} # Environment variables for the container
|
|
|
|
vllm:
|
|
command: "vllm"
|
|
args: ["serve"]
|
|
environment: {} # Environment variables for the backend process
|
|
docker:
|
|
enabled: false
|
|
image: "vllm/vllm-openai:latest"
|
|
args: ["run", "--rm", "--network", "host", "--gpus", "all", "--shm-size", "1g", "-v", "~/.local/share/llamactl/huggingface:/root/.cache/huggingface"]
|
|
environment: {} # Environment variables for the container
|
|
|
|
mlx:
|
|
command: "mlx_lm.server"
|
|
args: []
|
|
environment: {} # Environment variables for the backend process
|
|
|
|
instances:
|
|
port_range: [8000, 9000] # Port range for instances
|
|
data_dir: ~/.local/share/llamactl # Data directory (platform-specific, see below)
|
|
configs_dir: ~/.local/share/llamactl/instances # Instance configs directory
|
|
logs_dir: ~/.local/share/llamactl/logs # Logs directory
|
|
auto_create_dirs: true # Auto-create data/config/logs dirs if missing
|
|
max_instances: -1 # Max instances (-1 = unlimited)
|
|
max_running_instances: -1 # Max running instances (-1 = unlimited)
|
|
enable_lru_eviction: true # Enable LRU eviction for idle instances
|
|
default_auto_restart: true # Auto-restart new instances by default
|
|
default_max_restarts: 3 # Max restarts for new instances
|
|
default_restart_delay: 5 # Restart delay (seconds) for new instances
|
|
default_on_demand_start: true # Default on-demand start setting
|
|
on_demand_start_timeout: 120 # Default on-demand start timeout in seconds
|
|
timeout_check_interval: 5 # Idle instance timeout check in minutes
|
|
|
|
auth:
|
|
require_inference_auth: true # Require auth for inference endpoints
|
|
inference_keys: [] # Keys for inference endpoints
|
|
require_management_auth: true # Require auth for management endpoints
|
|
management_keys: [] # Keys for management endpoints
|
|
```
|
|
|
|
For detailed configuration options including environment variables, file locations, and advanced settings, see the [Configuration Guide](docs/getting-started/configuration.md).
|
|
|
|
## License
|
|
|
|
MIT License - see [LICENSE](LICENSE) file.
|